Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bioresour Technol ; 390: 129895, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37863335

RESUMO

High-solids enzymatic hydrolysis for biomass has currently received considerable interest. However, the solid effect during the process limits its economic feasibility. This work presented an ordered polyethylene glycol (PEG) pre-incubated strategy for enhancing the auxiliary effect of PEG in a high-solids enzymatic hydrolysis system. The substrate and enzyme were separately pre-incubated with PEG in this strategy. The ordered PEG pre-incubated strategies yielded a maximum glucose concentration of 166.6 g/L from 32 % (w/v) pretreated corncob with an enzymatic yield of 94.1 % by 72 h hydrolysis. Using this method, PEG not only lessened the lignin adsorption to cellulase but also altered particle rheological characteristics in the high-solids enzymatic hydrolysis system as a viscosity modifier. This study offered a new insight into the mechanism behind the PEG synergistic effect and would make it possible to achieve efficient high-solids loading hydrolysis in the commercial manufacture of cellulosic ethanol.


Assuntos
Celulase , Lignina , Lignina/química , Polietilenoglicóis/química , Hidrólise , Adsorção , Celulase/química
2.
Front Microbiol ; 13: 1035263, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36338095

RESUMO

As a dehydration product of pentoses in hemicellulose sugar streams derived from lignocellulosic biomass, furfural is a prevalent inhibitor in the efficient microbial conversion process. To solve this obstacle, exploiting a biorefinery strain with remarkable furfural tolerance capability is essential. Pseudomonas putida KT2440 (P. putida) has served as a valuable bacterial chassis for biomass biorefinery. Here, a high-concentration furfural-tolerant P. putida strain was developed via adaptive laboratory evolution (ALE). The ALE resulted in a previously engineered P. putida strain with substantially increased furfural tolerance as compared to wild-type. Whole-genome sequencing of the adapted strains and reverse engineering validation of key targets revealed for the first time that several genes and their mutations, especially for PP_RS19785 and PP_RS18130 [encoding ATP-binding cassette (ABC) transporters] as well as PP_RS20740 (encoding a hypothetical protein), play pivotal roles in the furfural tolerance and conversion of this bacterium. Finally, strains overexpressing these three striking mutations grew well in highly toxic lignocellulosic hydrolysate, with cell biomass around 9-, 3.6-, and two-fold improvement over the control strain, respectively. To our knowledge, this study first unravels the furan aldehydes tolerance mechanism of industrial workhorse P. putida, which provides a new foundation for engineering strains to enhance furfural tolerance and further facilitate the valorization of lignocellulosic biomass.

3.
Biotechnol Biofuels ; 14(1): 216, 2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34794503

RESUMO

1,2-Propanediol is an important building block as a component used in the manufacture of unsaturated polyester resin, antifreeze, biofuel, nonionic detergent, etc. Commercial production of 1,2-propanediol through microbial biosynthesis is limited by low efficiency, and chemical production of 1,2-propanediol requires petrochemically derived routes involving wasteful power consumption and high pollution emissions. With the development of various strategies based on metabolic engineering, a series of obstacles are expected to be overcome. This review provides an extensive overview of the progress in the microbial production of 1,2-propanediol, particularly the different micro-organisms used for 1,2-propanediol biosynthesis and microbial production pathways. In addition, outstanding challenges associated with microbial biosynthesis and feasible metabolic engineering strategies, as well as perspectives on the future microbial production of 1,2-propanediol, are discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA