Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Rice (N Y) ; 17(1): 45, 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39060652

RESUMO

Leaf morphology is a crucial agronomic characteristic of rice that influences crop yield directly. One primary cause of rice leaf rolling can be attributed to alterations in bulliform cells. Several HD-ZIP IV genes have been identified to be epidemical characterized and function in leaf rolling in rice. Still others need to be studied to fully understand the overall function of HD-ZIP IV family. Among the nine ROC genes encoding HD-ZIP IV family transcription factors in rice, ROC1 exhibits the highest expression in the leaves. Overexpression of ROC1 decreased the size of bulliform cells, and thus resulted in adaxially rolled leaves. To the contrary, knockout of ROC1 (ROC1KO) through Crispr-cas9 system enlarged bulliform cells, and thus led to abaxially rolled leaves. Moreover, ROC1KO plants were sensitive to drought. ROC1 could form homodimers on its own, and heterodimers with ROC5 and ROC8 respectively. Compared to ROC1KO plants, leaves of the ROC1 and ROC8 double knocked out plants (ROC1/8DKO) were more severely rolled abaxially due to enlarged bulliform cells, and ROC1/8DKO plants were more drought sensitive. However, overexpression of ROC8 could not restore the abaxial leaf phenotype of ROC1KO plants. Therefore, we proved that ROC1, a member of the HD-ZIP IV family, regulated leaf rolling and drought stress response through tight association with ROC5 and ROC8.

2.
Insect Sci ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38747085

RESUMO

In agroecosystems, plants are constantly exposed to attack from diverse herbivorous insects and microbes, and infestation with one species may change the plant defense response to other species. In our investigation of the relationships among rice plants, the brown planthopper Nilaparvata lugens (Stål) and the rice blast fungus Magnaporthe oryzae, we observed a significant increase in the resistance of rice treated with rice blast to N. lugens, as evidenced by improved plant survival rates in a small population resistance study. Subsequent transcriptome data analysis revealed that the rice blast fungus can induce the expression of genes in the jasmonic acid (JA) and flavonoid pathways. Similar to the flavonoid pathway, the JA pathway also contains 2 types of genes that exhibit similar and opposite trends in response to N. lugens and rice blast. Among these genes, the osjaz1 mutant and the osmyc2 mutant were phenotypically confirmed to positively and negatively regulate rice resistance to N. lugens and rice blast, respectively. Subsequent mass spectrometry and quantification experiments showed that the exogenous application of methyl jasmonate (MeJA) can induce the accumulation of eriodictyol, naringenin and quercetin, as well as the expression of OsF3H, Os4CL5 and OsCHI in the flavonoid pathway. This suggests a close connection between the JA pathway and the flavonoid pathway. However, OsF3'H, which negatively regulates rice resistance to N. lugens and rice blast, did not show increased expression. Phenotypic and molecular experiments confirmed that OsMYC2 can bind to and inhibit the expression of OsF3'H, thus revealing the mechanism of rice resistance to N. lugens after treatment with rice blast. These findings will deepen our understanding of the interactions among rice, N. lugens and rice blast.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA