Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Geostand Geoanal Res ; 42(4): 431-457, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30686958

RESUMO

Here, we document a detailed characterisation of two zircon gemstones, GZ7 and GZ8. Both stones had the same mass at 19.2 carats (3.84 g) each; both came from placer deposits in the Ratnapura district, Sri Lanka. The U-Pb data are in both cases concordant within the uncertainties of decay constants and yield weighted mean 206Pb/238U ages (95% confidence uncertainty) of 530.26 Ma ± 0.05 Ma (GZ7) and 543.92 Ma ± 0.06 Ma (GZ8). Neither GZ7 nor GZ8 have been subjected to any gem enhancement by heating. Structure-related parameters correspond well with the calculated alpha doses of 1.48 × 1018 g-1 (GZ7) and 2.53 × 1018 g-1 (GZ8), respectively, and the (U-Th)/He ages of 438 Ma ± 3 Ma (2s) for GZ7 and 426 Ma ± 9 Ma (2s) for GZ8 are typical of unheated zircon from Sri Lanka. The mean U mass fractions are 680 µg g-1 (GZ7) and 1305 µg g-1 (GZ8). The two zircon samples are proposed as reference materials for SIMS (secondary ion mass spectrometry) U-Pb geochronology. In addition, GZ7 (Ti mass fractions 25.08 µg g-1 ± 0.18 µg g-1; 95% confidence uncertainty) may prove useful as reference material for Ti-in-zircon temperature estimates.

2.
Sci Rep ; 12(1): 17272, 2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36241642

RESUMO

Porphyry-type deposits are a vital source of green technology metals such as copper and molybdenum. They typically form in subduction-related settings from large, long-lived magmatic systems. The most widely accepted model for their formation requires that mantle-derived magmas undergo an increase in volatiles and ore-forming constituents in mid- to lower crustal reservoirs over millions of years, however, this is mostly based on observations from shallow, sporadically exposed parts of porphyry systems. To examine this paradigm, we have evaluated the timeframe and geochemical signatures of magmatism in a ~ 8 km palaeodepth cross-section through plutonic and volcanic rocks of the classic Yerington magmatic system, Nevada. We show that the magmas in the upper parts of the system (< 8 km) underwent a major and rapid change in chemistry over a period of < 200 kyrs that is coincident with the initiation of ore formation. We attribute this change to a shift from extraction of quartz monzodiorite and quartz monzonite magmas evolving in mid-crustal reservoirs, and that had relatively poor ore-forming potential, to extraction of volatile-rich granitic magmas from greater (~ 30 km) depths. As the granites crystallised, late stage melts were intruded through the carapace as aplite dykes which contain traceable expressions of the porphyry deposit-forming fluids. The rapid nature of the shift in ore-forming potential narrows the temporal-geochemical footprint of magmas associated with porphyry mineralisation and provides new constraints for exploration models.

3.
Nat Commun ; 12(1): 2189, 2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33850122

RESUMO

Most known porphyry Cu deposits formed in the Phanerozoic and are exclusively associated with moderately oxidized, sulfur-rich, hydrous arc-related magmas derived from partial melting of the asthenospheric mantle metasomatized by slab-derived fluids. Yet, whether similar metallogenic processes also operated in the Precambrian remains obscure. Here we address the issue by investigating the origin, fO2, and S contents of calc-alkaline plutonic rocks associated with the Haib porphyry Cu deposit in the Paleoproterozoic Richtersveld Magmatic Arc (southern Namibia), an interpreted mature island-arc setting. We show that the ca. 1886-1881 Ma ore-forming magmas, originated from a mantle-dominated source with minor crustal contributions, were relatively oxidized (1‒2 log units above the fayalite-magnetite-quartz redox buffer) and sulfur-rich. These results indicate that moderately oxidized, sulfur-rich arc magma associated with porphyry Cu mineralization already existed in the late Paleoproterozoic, probably as a result of recycling of sulfate-rich seawater or sediments from the subducted oceanic lithosphere at that time.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA