Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
Intervalo de ano de publicação
1.
Front Neurol ; 14: 1270767, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38145122

RESUMO

Background: Stroke is a significant global health burden and ranks as the second leading cause of death worldwide. Objective: This study aims to develop and evaluate a machine learning-based predictive tool for forecasting the 90-day prognosis of stroke patients after discharge as measured by the modified Rankin Score. Methods: The study utilized data from a large national multiethnic stroke registry comprising 15,859 adult patients diagnosed with ischemic or hemorrhagic stroke. Of these, 7,452 patients satisfied the study's inclusion criteria. Feature selection was performed using the correlation and permutation importance methods. Six classifiers, including Random Forest (RF), Classification and Regression Tree, Linear Discriminant Analysis, Support Vector Machine, and k-Nearest Neighbors, were employed for prediction. Results: The RF model demonstrated superior performance, achieving the highest accuracy (0.823) and excellent discrimination power (AUC 0.893). Notably, stroke type, hospital acquired infections, admission location, and hospital length of stay emerged as the top-ranked predictors. Conclusion: The RF model shows promise in predicting stroke prognosis, enabling personalized care plans and enhanced preventive measures for stroke patients. Prospective validation is essential to assess its real-world clinical performance and ensure successful implementation across diverse healthcare settings.

2.
IEEE Trans Image Process ; 30: 4571-4586, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33830921

RESUMO

Classifying and modeling texture images, especially those with significant rotation, illumination, scale, and view-point variations, is a hot topic in the computer vision field. Inspired by local graph structure (LGS), local ternary patterns (LTP), and their variants, this paper proposes a novel image feature descriptor for texture and material classification, which we call Petersen Graph Multi-Orientation based Multi-Scale Ternary Pattern (PGMO-MSTP). PGMO-MSTP is a histogram representation that efficiently encodes the joint information within an image across feature and scale spaces, exploiting the concepts of both LTP-like and LGS-like descriptors, in order to overcome the shortcomings of these approaches. We first designed two single-scale horizontal and vertical Petersen Graph-based Ternary Pattern descriptors ( PGTPh and PGTPv ). The essence of PGTPh and PGTPv is to encode each 5×5 image patch, extending the ideas of the LTP and LGS concepts, according to relationships between pixels sampled in a variety of spatial arrangements (i.e., up, down, left, and right) of Petersen graph-shaped oriented sampling structures. The histograms obtained from the single-scale descriptors PGTPh and PGTPv are then combined, in order to build the effective multi-scale PGMO-MSTP model. Extensive experiments are conducted on sixteen challenging texture data sets, demonstrating that PGMO-MSTP can outperform state-of-the-art handcrafted texture descriptors and deep learning-based feature extraction approaches. Moreover, a statistical comparison based on the Wilcoxon signed rank test demonstrates that PGMO-MSTP performed the best over all tested data sets.

3.
Big Data ; 7(4): 221-248, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31411491

RESUMO

The K-nearest neighbor (KNN) classifier is one of the simplest and most common classifiers, yet its performance competes with the most complex classifiers in the literature. The core of this classifier depends mainly on measuring the distance or similarity between the tested examples and the training examples. This raises a major question about which distance measures to be used for the KNN classifier among a large number of distance and similarity measures available? This review attempts to answer this question through evaluating the performance (measured by accuracy, precision, and recall) of the KNN using a large number of distance measures, tested on a number of real-world data sets, with and without adding different levels of noise. The experimental results show that the performance of KNN classifier depends significantly on the distance used, and the results showed large gaps between the performances of different distances. We found that a recently proposed nonconvex distance performed the best when applied on most data sets comparing with the other tested distances. In addition, the performance of the KNN with this top performing distance degraded only ∼20% while the noise level reaches 90%, this is true for most of the distances used as well. This means that the KNN classifier using any of the top 10 distances tolerates noise to a certain degree. Moreover, the results show that some distances are less affected by the added noise comparing with other distances.


Assuntos
Big Data , Algoritmos , Análise por Conglomerados
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA