Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Inorg Chem ; 61(7): 3240-3248, 2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35137586

RESUMO

Arsenoplatin-1 (AP-1) is a dual-action anticancer metallodrug with a promising pharmacological profile that features the simultaneous presence of a cisplatin-like center and an arsenite center. We investigated its interactions with proteins through a joint experimental and theoretical approach. The reactivity of AP-1 with a variety of proteins, including carbonic anhydrase (CA), superoxide dismutase (SOD), myoglobin (Mb), glyceraldehyde 3-phosphate dehydrogenase (GAPDH), and human serum albumin (HSA), was analyzed by means of electrospray ionization mass spectrometry (ESI MS) measurements. In accordance with previous observations, ESI MS experiments revealed that the obtained metallodrug-protein adducts originated from the binding of the [(AP-1)-Cl]+ fragment to accessible protein residues. Remarkably, in two cases, i.e., Mb and GAPDH, the formation of a bound metallic fragment that lacked the arsenic center was highlighted. The reactions of AP-1 with various nucleophiles side chains of neutral histidine, methionine, cysteine, and selenocysteine, in neutral form as well as cysteine and selenocysteine in anionic form, were subsequently analyzed through a computational approach. We found that the aquation of AP-1 is energetically disfavored, with a reaction free energy of +19.2 kcal/mol demonstrating that AP-1 presumably attacks its biological targets through the exchange of the chloride ligand. The theoretical analysis of thermodynamics and kinetics for the ligand-exchange processes of AP-1 with His, Met, Cys, Sec, Cys-, and Sec- side chain models unveils that only neutral histidine and deprotonated cysteine and selenocysteine are able to effectively replace the chloride ligand in AP-1.


Assuntos
Trióxido de Arsênio/análogos & derivados , Cisplatino/análogos & derivados
2.
Int J Mol Sci ; 22(19)2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34638887

RESUMO

Three novel platinum(II) complexes bearing N-heterocyclic ligands, i.e., Pt2c, Pt-IV and Pt-VIII, were previously prepared and characterized. They manifested promising in vitro anticancer properties associated with non-conventional modes of action. To gain further mechanistic insight, we have explored here the reactions of these Pt compounds with a few model proteins, i.e., hen egg white lysozyme (HEWL), bovine pancreatic ribonuclease (RNase A), horse heart cytochrome c (Cyt-c) and human serum albumin (HSA), primarily through ESI MS analysis. Characteristic and variegate patterns of reactivity were highlighted in the various cases that appear to depend both on the nature of the Pt complex and of the interacting protein. The protein-bound Pt fragments were identified. In the case of the complex Pt2c, the adducts formed upon reaction with HEWL and RNase A were further characterized by solving the respective crystal structures: this allowed us to determine the exact location of the various Pt binding sites. The implications of the obtained results are discussed in relation to the possible mechanisms of action of these innovative anticancer Pt complexes.


Assuntos
Complexos de Coordenação/química , Citocromos c/química , Muramidase/química , Platina/química , Ribonuclease Pancreático/química , Animais , Antineoplásicos/química , Antineoplásicos/metabolismo , Sítios de Ligação , Bovinos , Complexos de Coordenação/metabolismo , Cristalografia por Raios X , Citocromos c/metabolismo , Cavalos , Humanos , Ligantes , Modelos Moleculares , Muramidase/metabolismo , Platina/metabolismo , Ligação Proteica , Domínios Proteicos , Ribonuclease Pancreático/metabolismo , Espectrometria de Massas por Ionização por Electrospray/métodos
3.
RSC Adv ; 12(41): 26680-26685, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36275152

RESUMO

Pd compounds form a promising class of experimental anticancer drug candidates whose mechanism of action is still largely unknown; in particular, a few organopalladium compounds seem very attractive. To gain mechanistic insight into medicinal palladium compounds, we have explored here - through ESI MS analysis - the interactions of four organopalladium agents (1-4) - showing remarkable in vitro antiproliferative properties - with a few representative model proteins, i.e., lysozyme (HEWL), ribonuclease A (RNase), and carbonic anhydrase (hCAI). The tested panel included three Pd allyl compounds with one or two carbene ligands and a palladacyclopentadienyl complex. Notably, the Pd allyl compounds turned out to manifest, on the whole, a modest tendency to react with the above proteins. Only complex 3 produced small amounts of characteristic adducts with hCAI bearing either one or two Pd allyl groups. In contrast, the palladacyclopentadienyl complex 4 manifested a greater and peculiar reactivity with all the above proteins generating invariably protein adducts with a mass increase of +256 Da where a butadienyl group - with no associated Pd - is attached to the proteins. Afterwards, we extended our investigations to the C-terminal dodecapeptide of thioredoxin reductase bearing the -Cys-Sec- reactive motif. In this latter case adducts were formed with all tested Pd compounds; however, complex 4 manifested towards this dodecapeptide a type of reactivity deeply different from that observed with HEWL, RNase A and hCAI. The mechanistic implications of these findings are discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA