Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 23(41): 23796-23807, 2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34643631

RESUMO

In this work, we examined the effect of the length of alkyl chain attached to the benzene ring on the self-assembling phenomena for a series of phenyl alcohol (PhA) derivatives, from phenylmethanol (benzyl alcohol) to 7-phenyl-1-heptanol, by means of X-Ray Diffraction (XRD), Differential Scanning Calorimetry (DSC), Fourier Transform Infrared (FTIR) spectroscopy, and Broadband Dielectric Spectroscopy (BDS) methods. XRD data in the reciprocal and real spaces showed a gradual increase in the local order with the elongation of the alkyl chain. However, the position and full width at half maximum of the main diffraction peak exhibited a non-systematic behavior. To better understand this fact, PhAs were subjected to FTIR spectroscopic studies. These investigations revealed that the association degree and the activation energy of dissociation increase as the alkyl chain length grows. On the other hand, BDS data showed a non-monotonic variation in the Kirkwood correlation factor with increasing length of the alkyl chain, indicating a competition between interactions of the non-polar and polar parts of the molecules in the studied PhAs. Finally, it was also found that the molar surface entropy for PhAs increases with the number of methylene groups, approaching values reported for alkanes, which indicates suppression of the surface order for PhAs with a long alkyl chain. This variability of the various parameters as a function of the length of the side chain shows that the interplay between soft interactions has a strong impact on the local structure and intra and intermolecular dynamics of the studied PhAs.

2.
Soft Matter ; 15(37): 7429-7437, 2019 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-31468042

RESUMO

The vitrification process is usually preceded by a significant change (around 6-8 decades) in the viscosity, structural relaxation times, or diffusion that occurs in a relatively small range of temperatures in fragile liquids. Along with this phenomenon, conformations of the molecules vary as well. In fact, this process is studied in bulk polymers and high molecular weight materials deposited in the form of thin films. On the other hand, spatial rearrangement of small glass formers in the supercooled liquid state has not been intensively investigated, so far. Herein, data obtained from measurements carried out using various experimental techniques on supercooled 1,2,3,4,6-penta-O-(trimethylsilyl)-d-glucopyranose (S-GLU) have revealed that rotations of silyl moieties along with the deformation in the saccharide ring are significantly slowed down in the vicinity of the glass transition temperature (Tg). These intramolecular reorganizations affect the structural relaxation time, atomic pair distribution function, integrated intensity, as well as a number of bands and signals observed, respectively, in the Raman and NMR spectra. Data reported herein offer a better understanding of the conformational variation and time scale of this process in the complex and flexible molecules around the Tg.

3.
J Chem Phys ; 148(22): 224505, 2018 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-29907061

RESUMO

In this paper, the molecular dynamics of a series of ester derivatives of ibuprofen (IBU), in which the hydrogen atom from the hydroxyl group was substituted by the methyl, isopropyl, hexyl, and benzyl moieties, has been investigated using Broadband dielectric (BD), Nuclear magnetic resonance (NMR), and Raman spectroscopies. We found that except for benzyl IBU (Ben-IBU), an additional process (slow mode, SM) appears in dielectric spectra in all examined compounds. It is worth noting that this relaxation process was observed for the first time in non-modified IBU (a Debye relaxation). According to suggestions by Affouard and Correia [J. Phys. Chem. B. 114, 11397 (2010)] as well as further studies by Adrjanowicz et al. [J. Chem. Phys. 139, 111103 (2013)] on Met-IBU, it was attributed to synperiplanar-antiperiplanar conformational changes within the molecule. Herein, we have shown that with an increasing molecular weight of the substituent, the relaxation times of the SM become longer and its activation energy significantly increases. Moreover, this new relaxation mode was found to be broader than a simple Debye relaxation in Iso-IBU and Hex-IBU. Additional complementary NMR studies indicated that either there is a significant slowdown of the rotation around the O=C-O-R moiety or this kind of movement is completely suppressed in the case of Ben-IBU. Therefore, the SM is not observed in the dielectric loss spectra of this compound. Finally, we carried out isothermal experiments on the samples which have a different thermal history. Interestingly, it turned out that the relaxation times of the structural processes are slightly shorter with respect to those obtained from temperature dependent measurements. This effect was the most prominent in the case of Hex-IBU, while for Ben-IBU, it was not observed at all. Additional time-dependent measurements revealed the ongoing equilibration manifested by the continuous shift of the structural process, until it finally reached its equilibrium position. Further Raman investigations showed that this effect may be related to the rotational/conformational equilibration of the long hexyl chains. Our results are the first ones demonstrating that the structural process is sensitive to the conformational equilibration occurring in the specific highly viscous systems.

4.
Mol Pharm ; 14(6): 2116-2125, 2017 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-28489944

RESUMO

In this paper the crystal growth of nifedipine from pure system and from binary mixtures composed of active substance (API) and two acetylated disaccharides, maltose and sucrose (NIF-acMAL, NIF-acSUC, 5:1 weight ratio), was investigated. Optical snapshots supported by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) measurements showed that mainly ß and α forms of nifedipine grow up in all investigated samples. They also revealed that the morphology of growing crystals strongly depends on the presence of modified carbohydrates and temperature conditions. Interestingly, it was found that the activation barrier for the crystal growth of the ß polymorph is not affected by acetylated saccharides while the one estimated for the α form changes significantly from 48.5 kJ/mol (pure API) up to 122 kJ/mol (NIF-acMAL system). Moreover, the relationship between the crystal growth rate and structural relaxation times for pure NIF and solid dispersions were analyzed. It turned out that there is a clear decoupling between the crystal growth rate and structural dynamics in both NIF-acMAL and NIF-acSUC binary mixtures. This is in line with recent reports indicating the decoupling phenomenon to be a universal feature of soft matter in the close vicinity of the glass transition temperature.


Assuntos
Cristalização/métodos , Nifedipino/química , Varredura Diferencial de Calorimetria , Simulação de Dinâmica Molecular , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier , Viscosidade , Difração de Raios X
5.
Phys Chem Chem Phys ; 19(31): 20949-20958, 2017 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-28745754

RESUMO

Comprehensive FTIR studies on the progress of mutarotation in d-fructose mixed with maltitol have been carried out over a wide range of temperatures, both above and below the glass transition temperature Tg. In addition to the analysis of single bands, we have developed a completely new approach considering the full spectral range to follow the overall progress of the reaction. We have found that at the calorimetric Tg, there is a clear change in the temperature dependence of constant rates. The activation barrier for mutarotation changes from around 59 kJ mol-1 (the supercooled state) to around 249 kJ mol-1 (the glassy state). This dramatic variation in the activation barrier is consistent with the change in the mechanism of this specific chemical conversion, as theoretically considered by Wlodarczyk et al. [Phys. Chem. Chem. Phys., 2014, 16, 4694-4698]. Alternatively, it can also be connected to the change in the viscosity of the sample. Additionally, we investigated the relationship between constant rates (k) of mutarotation, structural relaxation times (τα), and dc conductivity (σdc) above and below the glass transition temperature. It was found that there was a linear correlation between all these quantities; they scale with various exponents changing at Tg. Our results also indicate that a single activation barrier might not be sufficient to describe the mutarotation process.

6.
Phys Chem Chem Phys ; 18(15): 10585-93, 2016 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-27035123

RESUMO

The aim of this work is to analyze in detail the effect of small hydrogen bonding (HB) structures and enantiomeric composition on the dynamics of glass-forming liquid ketoprofen. For that purpose dielectric relaxation, rheological and NMR studies were performed. Investigated samples are racemic ketoprofen, a single enantiomer of ketoprofen and a racemic ketoprofen methyl ester with no tendency to form HB dimers. The combination of complementary experimental techniques enables us to show that macroscopic viscosity η and α-relaxation time τα have nearly the same temperature dependencies, whereas the relation between the viscosity (or molecular reorientation) and the translational self-diffusion coefficient violates Stokes-Einstein law already at high temperature. Additionally, based on dielectric relaxation studies performed on increased pressure we were able to identify similarities and key differences in the supercooled liquid dynamics of investigated materials affected by their tendency to form intermolecular hydrogen bonds. This includes the effect of pressure on the glass transition temperature Tg, changes in the fragility parameter m and activation volume ΔV, the role of thermal energy and density fluctuations in governing the viscous liquid dynamics (Ev/Ep ratio). Finally, we have also demonstrated that the dynamic behaviour of a single enantiomer and the racemic mixture of the same compound are very much alike. Nevertheless, some slight differences were observed, particularly in the τα(T) dependencies measured in the vicinity of glass transition both at ambient and elevated pressure.

7.
J Chem Phys ; 144(5): 054503, 2016 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-26851927

RESUMO

High pressure dielectric studies on the H-bonded liquid D-glucose and Orientationally Disordered Crystal (ODIC) 1,6-anhydro-D-glucose (levoglucosan) were carried out. It was shown that in both compounds, the structural relaxation is weakly sensitive to compression. It is well reflected in the low pressure coefficient of the glass transition and orientational glass transition temperatures which is equal to 60 K/GPa for both D-glucose and 1,6-anhydro-D-glucose. Although it should be noted that ∂Tg(0)/∂p evaluated for the latter compound seems to be enormously high with respect to other systems forming ODIC phase. We also found that the shape of the α-loss peak stays constant for the given relaxation time independently on the thermodynamic condition. Consequently, the Time Temperature Pressure (TTP) rule is satisfied. This experimental finding seems to be quite intriguing since the TTP rule was shown to work well in the van der Waals liquids, while in the strongly associating compounds, it is very often violated. We have also demonstrated that the sensitivity of the structural relaxation process to the temperature change measured by the steepness index (mp) drops with pressure. Interestingly, this change is much more significant in the case of D-glucose with respect to levoglucosan, where the fragility changes only slightly with compression. Finally, kinetics of ODIC-crystal phase transition was studied at high compression. It is worth mentioning that in the recent paper, Tombari and Johari [J. Chem. Phys. 142, 104501 (2015)] have shown that ODIC phase in 1,6-anhydro-D-glucose is stable in the wide range of temperatures and there is no tendency to form more ordered phase at ambient pressure. On the other hand, our isochronal measurements performed at varying thermodynamic conditions indicated unquestionably that the application of pressure favors solid (ODIC)-solid (crystal) transition in 1,6-anhydro-D-glucose. This result mimics the impact of pressure on the crystallization of fully disordered supercooled van der Waals liquids.


Assuntos
Vidro , Pressão , Estrutura Molecular , Análise Espectral/métodos , Temperatura , Difração de Raios X
8.
Mol Pharm ; 12(8): 3007-19, 2015 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-26101945

RESUMO

Molecular dynamics of pure nifedipine and its solid dispersions with modified carbohydrates as well as the crystallization kinetics of active pharmaceutical ingredient (API) above and below the glass transition temperature were studied in detail by means of broadband dielectric spectroscopy (BDS), differential scanning calorimetry (DSC), and X-ray diffraction method. It was found that the activation barrier of crystallization increases in molecular dispersions composed of acetylated disaccharides, whereas it slightly decreases in those consisting of modified monocarbohydrates for the experiments carried out above the glass transition temperature. As shown by molecular dynamics simulations it can be related to the strength, character, and structure of intermolecular interactions between API and saccharides, which vary dependently on the excipient. Long-term physical stability studies showed that, in solid dispersions consisting of acetylated maltose and acetylated sucrose, the crystallization of nifedipine is dramatically slowed down, although it is still observable for a low concentration of excipients. With increasing content of modified carbohydrates, the crystallization of API becomes completely suppressed. This is most likely due to additional barriers relating to the intermolecular interactions and diffusion of nifedipine that must be overcome to trigger the crystallization process.


Assuntos
Carboidratos/química , Cristalização/métodos , Simulação de Dinâmica Molecular , Nifedipino/química , Varredura Diferencial de Calorimetria , Estabilidade de Medicamentos , Excipientes/química , Cinética , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , Temperatura de Transição , Difração de Raios X
9.
J Chem Phys ; 142(22): 224507, 2015 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-26071720

RESUMO

Pressure-Volume-Temperature (PVT) measurements and broadband dielectric spectroscopy were carried out to investigate molecular dynamics and to test the validity of thermodynamic scaling of two homologous compounds of pharmaceutical activity: itraconazole and ketoconazole in the wide range of thermodynamic conditions. The pressure coefficients of the glass transition temperature (dT(g)/dp) for itraconazole and ketoconazole were determined to be equal to 183 and 228 K/GPa, respectively. However, for itraconazole, the additional transition to the nematic phase was observed and characterized by the pressure coefficient dT(n)/dp = 258 K/GPa. From PVT and dielectric data, we obtained that the liquid-nematic phase transition is governed by the relaxation time since it occurred at constant τ(α) = 10(-5) s. Furthermore, we plotted the obtained relaxation times as a function of T(-1)v(-γ), which has revealed that the validity of thermodynamic scaling with the γ exponent equals to 3.69 ± 0.04 and 3.64 ± 0.03 for itraconazole and ketoconazole, respectively. Further analysis of the scaling parameter in itraconazole revealed that it unexpectedly decreases with increasing relaxation time, which resulted in dramatic change of the shape of the thermodynamic scaling master curve. While in the case of ketoconazole, it remained the same within entire range of data (within experimental uncertainty). We suppose that in case of itraconazole, this peculiar behavior is related to the liquid crystals' properties of itraconazole molecule.


Assuntos
Itraconazol/química , Cetoconazol/química , Transição de Fase , Termodinâmica , Humanos , Itraconazol/uso terapêutico , Cetoconazol/uso terapêutico , Cristais Líquidos/química , Simulação de Dinâmica Molecular , Temperatura de Transição
10.
Mol Pharm ; 11(8): 2935-47, 2014 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-25011022

RESUMO

Differential scanning calorimetry (DSC), broadband dielectric (BDS), and Fourier transform infrared (FTIR) spectroscopies as well as theoretical computations were applied to investigate inter- and intramolecular interactions between the active pharmaceutical ingredient (API) indomethacin (IMC) and a series of acetylated saccharides. It was found that solid dispersions formed by modified glucose and IMC are the least physically stable of all studied samples. Dielectric measurements showed that this finding is related to neither the global nor local mobility, as the two were fairly similar. On the other hand, combined studies with the use of density functional theory (DFT) and FTIR methods indicated that, in contrast to acetylated glucose, modified disaccharides (maltose and sucrose) interact strongly with indomethacin. As a result, internal H-bonds between IMC molecules become very weak or are eventually broken. Simultaneously, strong H-bonds between the matrix and API are formed. This observation was used to explain the physical stability of the investigated solid dispersions. Finally, solubility measurements revealed that the solubility of IMC can be enhanced by the use of acetylated carbohydrates, although the observed improvement is marginal due to strong interactions.


Assuntos
Indometacina/química , Maltose/química , Sacarose/química , Glicemia/análise , Varredura Diferencial de Calorimetria , Estabilidade de Medicamentos , Trato Gastrointestinal/patologia , Vidro , Humanos , Ligação de Hidrogênio , Indometacina/administração & dosagem , Conformação Molecular , Solubilidade , Espectrofotometria , Espectrofotometria Infravermelho , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , Difração de Raios X
11.
Pharm Res ; 31(10): 2887-903, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24831310

RESUMO

PURPOSE: To demonstrate a very effective and easy way of stabilization of amorphous indomethacin (IMC) by preparing binary mixtures with octaacetylmaltose (acMAL). In order to understand the origin of increased stability of amorphous system inter- and intramolecular interactions between IMC and acMAL were studied. METHODS: The amorphous IMC, acMAL and binary mixtures (IMC-acMAL) with different weight ratios were analyzed by using Dielectric Spectroscopy (DS), Differential Scanning Calorimetry (DSC), Raman Spectroscopy, X-ray Diffraction (XRD), Infrared Spectroscopy (FTIR) and Quantitative Structure-Activity Relationship (QSAR). RESULTS: Our studies have revealed that indomethacin mixed with acetylated saccharide forms homogeneous mixture. Interestingly, even a small amount of modified maltose prevents from recrystallization of amorphous indomethacin. FTIR measurements and QSAR calculations have shown that octaacetylmaltose significantly affects the concentration of indomethacin dimers. Moreover, with increasing the amount of acMAL in the amorphous solid dispersion molecular interactions between matrix and API become more dominant than IMC-IMC ones. Structural investigations with the use of X-ray diffraction technique have demonstrated that binary mixture of indomethacin with acMAL does not recrystallize upon storage at room temperature for more than 1.5 year. Finally, it was shown that acMAL can be used to improve solubility of IMC. CONCLUSIONS: Acetylated derivative of maltose might be very effective agent to improve physical stability of amorphous indomethacin as well as to enhance its solubility. Intermolecular interactions between modified carbohydrate and IMC are likely to be responsible for increased stability effect in the glassy state.


Assuntos
Anti-Inflamatórios não Esteroides/química , Excipientes/química , Glucanos/química , Indometacina/química , Varredura Diferencial de Calorimetria , Cristalização , Espectroscopia Dielétrica , Estabilidade de Medicamentos , Simulação de Dinâmica Molecular , Estrutura Molecular , Transição de Fase , Relação Quantitativa Estrutura-Atividade , Solubilidade , Análise Espectral Raman , Propriedades de Superfície
12.
Mol Pharm ; 10(10): 3934-45, 2013 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-24010649

RESUMO

This paper presents comprehensive studies on the molecular dynamics of a pharmaceutically important substance, posaconazole. In order to characterize relaxation dynamics in the supercooled liquid and glassy states, dielectric and mechanical spectroscopies were applied. Dielectric data have indicated multiple relaxation processes that appear above and below the glass transition temperature Tg (τα=100 s) of posaconazole. From the curvature of the dielectric log10(τα) versus inverse of temperature dependence, we determine so-called "fragility", being a very popular parameter for classifying the structural dynamics of supercooled liquids and polymers. From the calculations, we get m=150, which means that is one of the most fragile glass-forming liquids. In this paper, the relaxation dynamics of supercooled posaconazole extracted from the dielectric response function was also confronted with shear-mechanical relaxation. Finally, we have also presented a direct comparison of the fragility and the number of dynamically correlated molecules Nc determined from dynamic calorimetry curves and dielectric and mechanical spectroscopies, showing a clear deviation in the picture of glass-transition dynamics generated by calorimetric and spectroscopic techniques.


Assuntos
Varredura Diferencial de Calorimetria/métodos , Simulação de Dinâmica Molecular , Análise Espectral/métodos , Triazóis/química
13.
Mol Pharm ; 10(5): 1824-35, 2013 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-23510208

RESUMO

Recently it was reported that upon mechanical milling of pure furosemide significant chemical degradation occurs (Adrjanowicz et al. Pharm. Res.2011, 28, 3220-3236). In this paper, we present a novel way of chemical stabilization amorphous furosemide against decomposing that occur during mechanical treatment by preparing binary mixtures with acylated saccharides. To get some insight into the mechanism of chemical degradation of furosemide induced by cryomilling, experimental investigations supported by density functional theory (DFT) computations were carried out. This included detailed studies on molecular dynamics and physical properties of cryoground samples. The main thrust of our paper is that we have shown that furosemide cryomilled with acylated saccharides forms chemically and physically stable homogeneous mixtures with only one glass transition temperature, Tg. Finally, solubility measurements have demonstrated that furosemide cryomilled with acylated saccharides (glucose, maltose and sucrose) is much more soluble with respect to the crystalline form of this active pharmaceutical ingredient (API).


Assuntos
Furosemida/química , Acilação , Varredura Diferencial de Calorimetria , Carboidratos/química , Química Farmacêutica , Cristalização , Diuréticos/química , Estabilidade de Medicamentos , Congelamento , Ligação de Hidrogênio , Simulação de Dinâmica Molecular , Estrutura Molecular , Solubilidade , Difração de Raios X
14.
Phys Chem Chem Phys ; 15(47): 20742-52, 2013 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-24196752

RESUMO

Comprehensive molecular dynamics studies of vitrified and cryogrounded itraconazole (Itr) were performed at ambient and elevated pressure. DSC measurements yielded besides melting and glass transition observed during heating and cooling of both samples two further endothermic events at around T = 363 K and T = 346 K. The nature of these transitions was investigated using X-ray diffraction, broadband dielectric spectroscopy and Density Functional Theory calculations. The X-ray measurements indicated that extra ordering in itraconazole is likely to occur. Based on calculations and theory derived by Letz et al. the transition observed at T = 363 K was discussed in the context of formation of the nematic mesophase. In fact, additional FTIR measurements revealed that order parameter variation in Itr shows a typical sequence of liquid crystal phases with axially symmetric orientational order; i.e. a nematic phase in the temperature range 361.7 K to 346.5 K and a smectic A phase below 346.5. Moreover, dielectric measurements demonstrated that except for the structural relaxation process, there is also slower mode above the glass transition temperature in both vitrified and cryogrounded samples. We considered the origin of this mode taking into account DFT calculations, rod like shape of itraconazole and distribution of its dipole moment vectors. For the dielectric data collected at elevated pressure, evolution of the steepness index versus pressure was determined. Finally, the pressure coefficient of the glass transition temperature was evaluated to be equal to 190 K GPa(-1).


Assuntos
Itraconazol/química , Simulação de Dinâmica Molecular , Varredura Diferencial de Calorimetria , Cristais Líquidos/química , Transição de Fase , Pressão , Temperatura de Transição
15.
Mol Pharm ; 9(6): 1748-63, 2012 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-22540343

RESUMO

Antibiotics are chemical compounds of extremely important medical role. Their history can be traced back more than one hundred years. Despite the passing time and significant progress made in pharmacy and medicine, treatment of many bacterial infections without antibiotics would be completely impossible. This makes them particularly unique substances and explains the unflagging popularity of antibiotics within the medical community. Herein, using dielectric spectroscopy we have studied the molecular mobility in the supercooled liquid and glassy states of three well-known antibiotic agents: azithromycin, clarithromycin and roxithromycin. Dielectric studies revealed a number of relaxation processes of different molecular origin. Besides the primary α-relaxation, observed above the respective glass transition temperatures of antibiotics, two secondary relaxations in the glassy state were identified. Interestingly, the fragility index as well as activation energies of the secondary processes turned out to be practically the same for all three compounds, indicating probably much the same molecular dynamics. Long-term stability of amorphous antibiotics at room temperature was confirmed by X-ray diffraction technique, and calorimetric studies were performed to evaluate the basic thermodynamic parameters. Finally, we have also checked the experimental solubility advantages given by the amorphous form of the examined antibiotics.


Assuntos
Antibacterianos/química , Azitromicina/química , Claritromicina/química , Espectroscopia Dielétrica/métodos , Simulação de Dinâmica Molecular , Roxitromicina/química , Estabilidade de Medicamentos , Temperatura , Difração de Raios X
16.
Mol Pharm ; 9(6): 1559-69, 2012 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-22553901

RESUMO

Broadband dielectric measurements were carried out in the supercooled as well as in the glassy state of two very important disaccharides: trehalose and sucrose. Multiple relaxation processes were observed. Above the glass transition temperatures of examined disaccharides structural relaxation of cooperative origin was detected, where in the glassy state more local motions (secondary modes) appeared. Our data were discussed in light of the findings reported by other groups. We pointed out that sample preparation might impact mobility and, thus, dielectric loss spectra in a significant way. Consequently, it may lead to misinterpretation of the dielectric relaxation processes. Moreover, impact of physical aging and pressure on dynamics of two secondary relaxation processes observed in the glassy state of trehalose and sucrose has been investigated. Additionally, we have demonstrated that, in contrast to the calorimetric measurements (DSC), activation energies of the ß- and γ-relaxation processes observed in the glassy state of sucrose and trehalose do not change as a result of physical aging. Finally, we found out that the ß-relaxation process slows down as pressure increases. We interpreted this fact in view of increasing rigidity of the structures of disaccharides.


Assuntos
Dissacarídeos/química , Eletroquímica/métodos , Simulação de Dinâmica Molecular , Sacarose/química , Trealose/química
17.
Spectrochim Acta A Mol Biomol Spectrosc ; 276: 121235, 2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35429862

RESUMO

In this paper, the steric hindrance effect related to the presence of either a cyclic or aromatic ring on the self-association process in the series of monohydroxy alcohols (MAs), from cyclohexanemethanol to 4-cyclohexyl-1-butanol and from benzyl alcohol to 4-phenyl-1-butanol, was studied using X-Ray Diffraction (XRD), Differential Scanning Calorimetry (DSC), Fourier Transform Infrared (FTIR) spectroscopy, Broadband Dielectric Spectroscopy (BDS) and the Pendant Drop (PD) methods. Based on FTIR results, it was shown that phenyl alcohol (PhA) and cyclohexyl alcohol (CA) derivatives reveal substantial differences in the association degree, the activation energy of dissociation, and the homogeneity of supramolecular nanoassociates suggesting that the phenyl ring exerts a stronger steric impact on the self-assembling of molecules than cyclohexyl one. Additionally, XRD data revealed that phenyl moiety introduces more heterogeneity in the organization of molecules compared to the cyclic one. The changes in the self-association process of alcohols were also reflected in differences in the molecular dynamics of the H-bonded aggregates, as well as in the Kirkwood factor, defining the long-range correlation between dipoles, which were slightly higher for CAs with respect to those determined for PhAs. Unexpectedly it was also found that the surface layers of PhAs were more organized than those formed by CAs. Thus, these findings provided insight into the impact of aromaticity on the self-assembly process, H-bonding pattern, supramolecular structure, and intermolecular dynamics of the studied alcohols.

18.
J Phys Chem B ; 125(11): 2960-2967, 2021 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33691402

RESUMO

Herein, we investigated the molecular dynamics as well as intramolecular interactions in two primary monohydroxy alcohols (MA), 2-ethyl-1-hexanol (2EHOH) and n-butanol (nBOH), by means of broad-band dielectric (BDS) and Fourier transform infrared (FTIR) spectroscopy. The modeling data obtained from dielectric studies within the Rubinstein approach [ Macromolecules 2013, 46, 7525-7541] originally developed to describe the dynamical properties of self-assembling macromolecules allowed us to calculate the energy barrier (Ea) of dissociation from the temperature dependences of relaxation times of Debye and structural processes. We found Ea ∼ 19.4 ± 0.8 and 5.3 ± 0.4 kJ/mol for the former and latter systems, respectively. On the other hand, FTIR data analyzed within the van't Hoff relationship yielded the energy barriers for dissociation Ea ∼ 20.3 ± 2.1 and 12.4 ± 1.6 kJ/mol for 2EHOH and nBOH, respectively. Hence, there was almost a perfect agreement between the values of Ea estimated from dielectric and FTIR studies for the 2EHOH, while some notable discrepancy was noted for the second alcohol. A quite significant difference in the activation barrier of dissociation indicates that there are probably supramolecular clusters of varying geometry or a ring-chain-like equilibrium is strongly affected in both alcohols. Nevertheless, our analysis showed that the association/dissociation processes undergoing within nanoassociates are one of the main factors underlying the molecular origin of the Debye process, supporting the transient chain model.

19.
J Phys Chem B ; 124(23): 4821-4834, 2020 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-32396358

RESUMO

Broadband dielectric spectroscopy (BDS) has been used to study the molecular dynamics and aging process in neat probucol (PRO) as well as its binary mixtures with selected acetylated saccharides. In particular, we applied the Casalini and Roland approach to determine structural relaxation times in the glassy state of the examined systems (so-called isostructural times, τiso). Next, using the calculated τiso, primitive relaxation times of the coupling model were obtained and compared to the experimental secondary ß (Johari-Goldstein (JG) type) relaxation times. Interestingly, it turned out that there is a correlation between the ß-JG and the structural (α)-relaxation processes below the glass transition temperature (T < Tg) in each investigated sample. This is a new observation compared to previous studies demonstrating that such a relationship exists only in the supercooled liquid state of neat PRO. Moreover, it was revealed that the stretching parameters obtained from the aging procedure are very close to the ones determined by fitting the dielectric data above the Tg with the use of the Kohlrausch-Williams-Watts function, indicating that the aging process is governed by the α-relaxation. Complementary Fourier transform infrared and X-ray diffraction measurements allowed us to find a possible reason for these findings. It was demonstrated that although there are very weak intermolecular interactions between PRO and modified saccharides, the intra- and intermolecular structure of PRO is practically unaffected by the presence of modified saccharides.

20.
Eur J Pharm Sci ; 141: 105091, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31655208

RESUMO

In this paper, we studied the impact of saccharides having a similar backbone but differing in the degree of freedom, local molecular mobility, flexibility of the ring and intermolecular interactions on the glass-forming ability (GFA) of naproxen (NAP) in binary mixtures. For this purpose, a series of methyl and acetyl derivatives of glucose (GLS) and anhydroglucose (anhGLS), as well as neat anhGLS have been used to produce homogeneous solid dispersions (SDs) of varying molar concentration of examined active pharmaceutical ingredient (API). Systematic measurements with the use of Differential Scanning Calorimetry (DSC) and Broadband Dielectric Spectroscopy (BDS) enabled us to determine the phase transitions, homogeneity and molecular mobility of the investigated binary mixtures as well as the impact of excipient on the crystallization tendency of NAP. It turned out that acetylated glucose (acGLS), one of the most mobile and flexible saccharides of all examined herein materials, is the best excipient enhancing the GFA of studied API. Although, it should be noted that upon storage at room temperature, we observed the recrystallization of NAP from binary mixtures. Interestingly, API always crystallized to the initial polymorphic form, as shown by X-ray diffraction (XRD) investigations. Finally, since additional measurements with the use of Fourier Transform Infrared (FTIR) Spectroscopy clearly indicated that there are no significant differences in the intermolecular interactions in the systems composed of NAP and all examined saccharides, one can postulate that the mobility and ring flexibility of the matrix have, , the most important impact on the crystallization tendency of NAP upon cooling. Consequently, it seems that in some cases, more mobile/flexible matrices can be a much better choice to enhance the glass-forming ability of studied pharmaceutical.


Assuntos
Anti-Inflamatórios não Esteroides/química , Vidro/química , Glucose/análogos & derivados , Glucose/química , Naproxeno/química , Cristalização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA