Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Environ Microbiol ; 26(4): e16626, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38646847

RESUMO

The bacterial genus Hafnia has recently attracted attention due to its complex metabolic features and host-interaction capabilities, which are associated with health benefits, primarily weight loss. However, significant gaps remain in our understanding of the genomic characteristics of this emerging microbial group. In this study, we utilized all available high-quality genomes of Hafnia alvei and Hafnia paralvei to uncover the broad distribution of Hafnia in human and honeybee guts, as well as in dairy products, by analysing 1068 metagenomic datasets. We then investigated the genetic traits related to Hafnia's production of vitamins and short-chain fatty acids (SCFAs) through a comparative genomics analysis that included all dominant bacterial species in the three environments under study. Our findings underscore the extensive metabolic capabilities of Hafnia, particularly in the production of vitamins such as thiamine (B1), nicotinate (B3), pyridoxine (B6), biotin (B7), folate (B9), cobalamin (B12), and menaquinone (K2). Additionally, Hafnia demonstrated a conserved genetic makeup associated with SCFA production, including acetate, propanoate, and butanoate. These metabolic traits were further confirmed using RNAseq analyses of a newly isolated H. paralvei strain T10. Overall, our study illuminates the ecological distribution and genetic attributes of this bacterial genus, which is of increasing scientific and industrial relevance.


Assuntos
Microbioma Gastrointestinal , Microbioma Gastrointestinal/genética , Humanos , Animais , Abelhas/microbiologia , Ácidos Graxos Voláteis/metabolismo , Genoma Bacteriano , Microbiologia de Alimentos , Metagenômica , Vitaminas/metabolismo , Filogenia
2.
Appl Environ Microbiol ; 90(2): e0201423, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38294252

RESUMO

Bifidobacteria are among the first microbial colonizers of the human gut, being frequently associated with human health-promoting activities. In the current study, an in silico methodology based on an ecological and phylogenomic-driven approach allowed the selection of a Bifidobacterium adolescentis prototype strain, i.e., B. adolescentis PRL2023, which best represents the overall genetic content and functional features of the B. adolescentis taxon. Such features were confirmed by in vitro experiments aimed at evaluating the ability of this strain to survive in the gastrointestinal tract of the host and its ability to interact with human intestinal cells and other microbial gut commensals. In this context, co-cultivation of B. adolescentis PRL2023 and several gut commensals revealed various microbe-microbe interactions and indicated co-metabolism of particular plant-derived glycans, such as xylan.IMPORTANCEThe use of appropriate bacterial strains in experimental research becomes imperative in order to investigate bacterial behavior while mimicking the natural environment. In the current study, through in silico and in vitro methodologies, we were able to identify the most representative strain of the Bifidobacterium adolescentis species. The ability of this strain, B. adolescentis PRL2023, to cope with the environmental challenges imposed by the gastrointestinal tract, together with its ability to switch its carbohydrate metabolism to compete with other gut microorganisms, makes it an ideal choice as a B. adolescentis prototype and a member of the healthy microbiota of adults. This strain possesses a genetic blueprint appropriate for its exploitation as a candidate for next-generation probiotics.


Assuntos
Bifidobacterium adolescentis , Microbioma Gastrointestinal , Probióticos , Adulto , Humanos , Bifidobacterium adolescentis/genética , Bifidobacterium adolescentis/metabolismo , Microbioma Gastrointestinal/genética , Bifidobacterium/genética , Bifidobacterium/metabolismo , Filogenia
3.
Adv Appl Microbiol ; 126: 93-119, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38637108

RESUMO

The early postnatal period represents a critical window of time for the establishment and maturation of the human gut microbiota. The gut microbiota undergoes dramatic developmental changes during the first year of life, being influenced by a variety of external factors, with diet being a major player. Indeed, the introduction of complementary feeding provides novel nutritive substrates and triggers a shift from milk-adapted gut microbiota toward an adult-like bacterial composition, which is characterized by an enhancement in diversity and proportions of fiber-degrading bacterial genera like Ruminococcus, Prevotella, Eubacterium, and Bacteroides genera. Inadequate gut microbiota development in early life is frequently associated with concomitant and future adverse health conditions. Thus, understanding the processes that govern initial colonization and establishment of microbes in the gastrointestinal tract is of great importance. This review summarizes the actual understanding of the assembly and development of the microbial community associated with the infant gut, emphasizing the importance of mother-to-infant vertical transmission events as a fundamental arrival route for the first colonizers.


Assuntos
Microbioma Gastrointestinal , Microbiota , Lactente , Feminino , Humanos , Trato Gastrointestinal/microbiologia , Mães , Dieta
4.
Environ Microbiol ; 24(12): 5666-5679, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36161453

RESUMO

Bifidobacterium asteroides is considered the ancestor of the genus Bifidobacterium, which has evolved in close touch with the hindgut of social insects. However, recent studies revealed high intraspecies biodiversity within this taxon, uncovering the putative existence of multiple bifidobacterial species, thus, suggesting its reclassification. Here, a genomic investigation of 98 B. asteroides-related genomes retrieved from public repositories and reconstructed from metagenomes of the hindgut of Apis mellifera and Apis cerana was performed to shed light on the genetic variability of this taxon. Phylogenetic and genomic analyses revealed the existence of eight clusters, of which five have been recently characterized with a representative type strain of the genus and three were represented by putative novel bifidobacterial species inhabiting the honeybee gut. Then, the dissection of 366 shotgun metagenomes of honeybee guts revealed a pattern of seven B. asteroides-related taxa within A. mellifera that co-exist with the host, while A. cerana microbiome was characterized by the predominance of one of the novel species erroneously classified as B. asteroides. A further glycobiome analysis unveiled a conserved repertoire of glycosyl hydrolases (GHs) reflecting degradative abilities towards a broad range of simple carbohydrates together with genes encoding specific GHs of each B. asteroides-related taxa.


Assuntos
Bifidobacterium , Microbiota , Abelhas , Animais , Filogenia , Bifidobacterium/genética , Microbiota/genética , Metagenoma
5.
Environ Microbiol ; 24(9): 3912-3923, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35355372

RESUMO

Fresh potable water is an indispensable drink which humans consume daily in substantial amounts. Nonetheless, very little is known about the composition of the microbial community inhabiting drinking water or its impact on our gut microbiota. In the current study, an exhaustive shotgun metagenomics analysis of the tap water microbiome highlighted the occurrence of a highly genetic biodiversity of the microbial communities residing in fresh water and the existence of a conserved core tap water microbiota largely represented by novel microbial species, representing microbial dark matter. Furthermore, genome reconstruction of this microbial dark matter from water samples unveiled homologous sequences present in the faecal microbiome of humans from various geographical locations. Accordingly, investigation of the faecal microbiota content of a subject that daily consumed tap water for 3 years provides proof for horizontal transmission and colonization of water bacteria in the human gut.


Assuntos
Água Potável , Microbioma Gastrointestinal , Microbiota , Bactérias/genética , Humanos , Metagenômica , RNA Ribossômico 16S/genética
6.
Environ Microbiol ; 24(12): 6453-6462, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36086955

RESUMO

Recent pandemic infection caused by SARS-CoV-2 (COVID-19) led the scientific community to investigate the possible causes contributing to the physiopathology of this disease. In this context, analyses of the intestinal microbiota highlighted possible correlation between host-associated bacterial communities and development of the COVID-19. Nevertheless, a detailed investigation of the role of the human microbiota in the severity of the symptoms of this disease is still lacking. This study performed a comprehensive meta-analysis of 323 faecal samples from public and novel Italian data sets based on the shotgun metagenomic approach. In detail, the comparative analyses revealed possible differences in the microbial biodiversity related to the individual health status, highlighting a species richness decrease in COVID-19 patients with a severe prognosis. Moreover, healthy subjects resulted characterized by a higher abundance of protective and health-supporting bacterial species, while patients affected by COVID-19 disease displayed a significant increase of opportunistic pathogen bacteria involved in developing putrefactive dysbiosis. Furthermore, prediction of the microbiome functional capabilities suggested that individuals affected by COVID-19 subsist in an unbalanced metabolism characterized by an overrepresentation of enzymes involved in the protein metabolism at the expense of carbohydrates oriented pathways, which can impact on disease severity and in excessive systemic inflammation.


Assuntos
COVID-19 , Microbioma Gastrointestinal , Humanos , SARS-CoV-2 , Disbiose/microbiologia , Pandemias , Bactérias/genética
7.
Environ Microbiol ; 24(12): 5825-5839, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36123315

RESUMO

The genomic era has resulted in the generation of a massive amount of genetic data concerning the genomic diversity of bacterial taxa. As a result, the microbiological community is increasingly looking for ways to define reference bacterial strains to perform experiments that are representative of the entire bacterial species. Despite this, there is currently no established approach allowing a reliable identification of reference strains based on a comprehensive genomic, ecological, and functional context. In the current study, we developed a comprehensive multi-omics approach that will allow the identification of the optimal reference strains using the Bifidobacterium genus as test case. Strain tracking analysis based on 1664 shotgun metagenomics datasets of healthy infant faecal samples were employed to identify bifidobacterial strains suitable for in silico and in vitro analyses. Subsequently, an ad hoc bioinformatic tool was developed to screen local strain collections for the most suitable species-representative strain alternative. The here presented approach was validated using in vitro trials followed by metagenomics and metatranscriptomics analyses. Altogether, these results demonstrated the validity of the proposed model for reference strain selection, thus allowing improved in silico and in vitro investigations both in terms of cross-laboratory reproducibility and relevance of research findings.


Assuntos
Bifidobacterium , Multiômica , Humanos , Lactente , Bifidobacterium/genética , Reprodutibilidade dos Testes , Fezes/microbiologia , Metagenômica , Bactérias
8.
Appl Environ Microbiol ; 88(12): e0052222, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35652662

RESUMO

Amoxicillin-clavulanic acid (AMC) is the most widely used antibiotic, being frequently prescribed to infants. Particular members of the genus Bifidobacterium are among the first microbial colonizers of the infant gut, and it has been demonstrated that they exhibit various activities beneficial for their human host, including promotion/maintenance of the human gut microbiota homeostasis. It has been shown that natural resistance of bifidobacteria to AMC is limited to a small number of strains. In the current study, we investigated the mitigation effects of AMC-resistant bifidobacteria in diversity preservation of the gut microbiota during AMC treatment. To this end, an in vitro coculture experiment based on infant fecal samples and an in vivo study employing a rodent model were performed. The results confirmed the ability of AMC-resistant bifidobacterial strains to bolster gut microbiota resilience, while specific covariance analysis revealed strain-specific and variable impacts on the microbiota composition by individual bifidobacterial taxa. IMPORTANCE The first microbial colonizers of the infant gut are members of the genus Bifidobacterium, which exhibit different activities beneficial to their host. Amoxicillin-clavulanic acid (AMC) is the most frequently prescribed antibiotic during infancy, and few strains of bifidobacteria are known to show a natural resistance to this antibiotic. In the present work, we evaluated the possible positive effects of AMC-resistant bifidobacterial strains in maintaining gut microbiota diversity during AMC exposure, performing an in vitro and in vivo experiment based on an infant gut model and a rodent model, respectively. Our results suggested the ability of AMC-resistant bifidobacterial strains to support gut microbiota restoration.


Assuntos
Bifidobacterium , Microbioma Gastrointestinal , Combinação Amoxicilina e Clavulanato de Potássio/farmacologia , Antibacterianos/farmacologia , Fezes/microbiologia , Humanos , Lactente
9.
Appl Environ Microbiol ; 88(7): e0203821, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35285708

RESUMO

In recent decades, much scientific attention has been paid to characterizing members of the genus Bifidobacterium due to their well-accepted ability to exert various beneficial effects upon their host. However, despite the well-accepted status of dogs and cats as principal companion animals of humans, the bifidobacterial communities that colonize their gut still represents a rather unexplored research area. To expand and further investigate the bifidobacterial ecosystem inhabiting the canine and feline intestine, strains belonging to this genus were isolated from fecal samples of dogs and cats and subjected to de novo sequencing. The obtained sequencing data, together with publicly available genomes of strains belonging to the same bifidobacterial species of our isolates, and of both human and animal origin, were employed for in-depth comparative genome analyses. These phylogenomic investigations highlighted a different degree of genetic variability between human- or pet-derived bifidobacteria depending on the considered species, with B. pseudocatenulatum strains of pet origin showing higher genetic variability than human-derived strains of the same bifidobacterial species. Furthermore, in silico evaluation of metabolic activities coupled with in vitro growth assays revealed the crucial role of diet in driving the genetic assembly of bifidobacteria as a result of their adaptation to the specific ecological niche they colonize. IMPORTANCE Despite cats and dogs being well recognized as the most intimate companion animals to humans, current knowledge on canine and feline gut microbial consortia is still far from being fully dissected compared to the significant advances achieved for other microbial ecosystems, such as the human gut microbiota. In this context, a combination of in silico genome-based analysis and in vitro carbohydrate growth assay allowed us to further explore the canine and feline bifidobacterial community with respect to that inhabiting the human intestine. Specifically, these data revealed how strains of different bifidobacterial species seem to have evolved a different degree of host-specific adaptation. In detail, genotypic and phenotypic evidence of how diet can be considered the main factor of this host-specific adaptation is provided.


Assuntos
Doenças do Gato , Doenças do Cão , Animais , Bifidobacterium/metabolismo , Gatos , Cães , Ecossistema , Genômica , Humanos
10.
Environ Microbiol ; 23(3): 1780-1792, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33615652

RESUMO

The human vaginal environment harbours a community of bacteria that plays an important role in maintaining vaginal health and in protecting this environment from various urogenital infections. This bacterial population, also known as vaginal microbiota, has been demonstrated to be dominated by members of the Lactobacillus genus. Several studies employing 16S rRNA gene-based amplicon sequencing have classified the vaginal microbiota into five distinct community state types (CSTs) or vaginotypes. To deepen our understanding of the vaginal microbiota we performed an in-depth meta-analysis of 1312 publicly available datasets concerning healthy vaginal microbiome information obtained by metagenomics sequencing. The analysis confirmed the predominance of taxa belonging to the Lactobacillus genus, followed by members of the genera Gardnerella, Vibrio and Atopobium. Moreover, the statistical robustness offered by this meta-analysis allowed us to disentangle the species-level composition of dominant and accessory taxa constituting each vaginotype and to revisit and refine the previously proposed CST classification. In addition, a functional characterization of the metagenomic datasets revealed particular genetic features associated with each assigned vaginotype.


Assuntos
Microbiota , Feminino , Humanos , Lactobacillus/genética , Metagenômica , Microbiota/genética , RNA Ribossômico 16S/genética , Vagina
11.
Environ Microbiol ; 23(6): 3294-3305, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33973321

RESUMO

Whole metagenomic shotgun (WMS) sequencing has dramatically enhanced our ability to study microbial genomics. The possibility to unveil the genetic makeup of bacteria that cannot be easily isolated has significantly expanded our microbiological horizon. Here, we report an approach aimed at uncovering novel bacterial species by the use of targeted WMS sequencing. Employing in silico data retrieved from metabolic modelling to formulate a chemically defined medium (CDM), we were able to isolate and subsequently sequence the genomes of six putative novel species of bacteria from the gut of non-human primates.


Assuntos
Microbioma Gastrointestinal , Animais , Bactérias/genética , Microbioma Gastrointestinal/genética , Genoma Bacteriano/genética , Metagenoma , Metagenômica
12.
Appl Environ Microbiol ; 87(1)2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-33097505

RESUMO

Gardnerella vaginalis is described as a common anaerobic vaginal bacterium whose presence may correlate with vaginal dysbiotic conditions. In the current study, we performed phylogenomic analyses of 72 G. vaginalis genome sequences, revealing noteworthy genome differences underlying a polyphyletic organization of this taxon. Particularly, the genomic survey revealed that this species may actually include nine distinct genotypes (GGtype1 to GGtype9). Furthermore, the observed link between sialidase and phylogenomic grouping provided clues of a connection between virulence potential and the evolutionary history of this microbial taxon. Specifically, based on the outcomes of these in silico analyses, GGtype3, GGtype7, GGtype8, and GGtype9 appear to have virulence potential since they exhibited the sialidase gene in their genomes. Notably, the analysis of 34 publicly available vaginal metagenomic samples allowed us to trace the distribution of the nine G. vaginalis genotypes identified in this study among the human population, highlighting how differences in genetic makeup could be related to specific ecological properties. Furthermore, comparative genomic analyses provided details about the G. vaginalis pan- and core genome contents, including putative genetic elements involved in the adaptation to the ecological niche as well as many putative virulence factors. Among these putative virulence factors, particularly noteworthy genes identified were the gene encoding cholesterol-dependent cytolysin (CDC) toxin vaginolysin and genes related to microbial biofilm formation, iron uptake, adhesion to the vaginal epithelium, as well as macrolide antibiotic resistance.IMPORTANCE The identification of nine different genotypes among members of G. vaginalis allowed us to distinguish an uneven distribution of virulence-associated genetic traits within this taxon and thus suggest the potential occurrence of putative pathogen and commensal G. vaginalis strains. These findings, coupled with metagenomics microbial profiling of human vaginal microbiota, permitted us to get insights into the distribution of the genotypes among the human population, highlighting the presence of different structural communities in terms of G. vaginalis genotypes.


Assuntos
Gardnerella vaginalis/genética , Variação Genética , Genoma Bacteriano , Genótipo , Filogenia , Vagina/microbiologia , Feminino , Genômica , Humanos
13.
Microbiome Res Rep ; 3(1): 4, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38455080

RESUMO

Background: Recent advances in microbiome sequencing techniques have provided new insights into the role of the microbiome on human health with potential diagnostic implications. However, these developments are often hampered by the presence of a large amount of human DNA interfering with the analysis of the bacterial content. Nowadays, extensive scientific literature focuses on eukaryotic DNA depletion methods, which successfully remove host DNA in microbiome studies, even if a precise assessment of the impact on bacterial DNA is often missing. Methods: Here, we have investigated a saponin-based DNA isolation protocol commonly applied to different biological matrices to deplete the released host DNA. Results: The bacterial DNA obtained was used to assess the relative abundance of bacterial and human DNA, revealing that the inclusion of 2.5% wt/vol saponin allowed the depletion of most of the host's DNA in favor of bacterial DNA enrichment. However, shotgun metagenomic sequencing showed inaccurate microbial profiles of the DNA samples, highlighting an erroneous increase in Gram-positive DNA. Even the application of 0.0125% wt/vol saponin altered the bacterial profile by depleting Gram-negative bacteria, resulting in an overall increase of Gram-positive bacterial DNA. Conclusion: The application of the saponin-based protocol drastically changes the detection of the microbial composition of human-related biological specimens. In this context, we revealed that saponin targets not only host cells but also specific bacterial cells, thus inducing a drastic reduction in the profiling of Gram-negative bacterial DNA.

14.
Front Microbiol ; 15: 1349391, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38426063

RESUMO

Members of the genus Bifidobacterium are among the first microorganisms colonizing the human gut. Among these species, strains of Bifidobacterium breve are known to be commonly transmitted from mother to her newborn, while this species has also been linked with activities supporting human wellbeing. In the current study, an in silico approach, guided by ecology- and phylogenome-based analyses, was employed to identify a representative strain of B. breve to be exploited as a novel health-promoting candidate. The selected strain, i.e., B. breve PRL2012, was found to well represent the genetic content and functional genomic features of the B. breve taxon. We evaluated the ability of PRL2012 to survive in the gastrointestinal tract and to interact with other human gut commensal microbes. When co-cultivated with various human gut commensals, B. breve PRL2012 revealed an enhancement of its metabolic activity coupled with the activation of cellular defense mechanisms to apparently improve its survivability in a simulated ecosystem resembling the human microbiome.

15.
FEMS Microbiol Ecol ; 100(6)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38782729

RESUMO

Periodontal diseases are among the most common bacterial-related pathologies affecting the oral cavity of dogs. Nevertheless, the canine oral ecosystem and its correlations with oral disease development are still far from being fully characterized. In this study, the species-level taxonomic composition of saliva and dental plaque microbiota of 30 healthy dogs was investigated through a shallow shotgun metagenomics approach. The obtained data allowed not only to define the most abundant and prevalent bacterial species of the oral microbiota in healthy dogs, including members of the genera Corynebacterium and Porphyromonas, but also to identify the presence of distinct compositional motifs in the two oral microniches as well as taxonomical differences between dental plaques collected from anterior and posterior teeth. Subsequently, the salivary and dental plaque microbiota of 18 dogs affected by chronic gingival inflammation and 18 dogs with periodontitis were compared to those obtained from the healthy dogs. This analysis allowed the identification of bacterial and metabolic biomarkers correlated with a specific clinical status, including members of the genera Porphyromonas and Fusobacterium as microbial biomarkers of a healthy and diseased oral status, respectively, and genes predicted to encode for metabolites with anti-inflammatory properties as metabolic biomarkers of a healthy status.


Assuntos
Bactérias , Biomarcadores , Placa Dentária , Doenças do Cão , Microbiota , Doenças Periodontais , Saliva , Animais , Cães , Saliva/microbiologia , Placa Dentária/microbiologia , Doenças Periodontais/microbiologia , Doenças Periodontais/veterinária , Doenças do Cão/microbiologia , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Porphyromonas/genética , Porphyromonas/isolamento & purificação , Metagenômica , Boca/microbiologia , Masculino
16.
mSystems ; 9(4): e0129423, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38441032

RESUMO

The human gut microbiota is a dynamic community of microorganisms that undergo variable changes over the entire life span. To thoroughly investigate the possible fluctuations of the microbiota throughout human life, we performed a pooled analysis of healthy fecal samples across different age groups covering the entire human life span. Our study integrated data from 79 publicly available studies and new stool samples from an Italian cohort, i.e., the Parma Microbiota project, resulting in 6,653 samples processed through the shotgun metagenomic approach. This approach has allowed species-level taxonomic reconstruction of the gut microbiota and investigation of its metabolic potential across the human life span. From a taxonomic point of view, our findings confirmed and detailed at species-level accuracy that the microbial richness of the gut microbiota gradually increases in the first stage of life, becoming relatively stable during adolescence. Moreover, the analysis identified the potential core microbiota representative of distinct age groups, revealing age-related bacterial patterns and the continuous rearrangement of the microbiota in terms of relative abundances across the life span rather than the acquisition and loss of taxa. Furthermore, the shotgun approach provided insights into the functional contribution of the human gut microbiome. The metagenomic analysis revealed functional age-related differences, particularly in carbohydrate and fiber metabolism, suggesting a co-evolution of the microbiome assembly with diet. Additionally, we identified correlations between vitamin synthesis, such as thiamine and niacin, and early life, suggesting a potential role of the microbiome in human physiology, in particular in the functions of the host's nervous and immune systems. IMPORTANCE: In this study, we provided comprehensive insights into the dynamic nature of the human gut microbiota across the human life span. In detail, we analyzed a large data set based on a shotgun metagenomic approach, combining public data sets and new samples from the Parma Microbiota project and obtaining a detailed overview of the possible relationship between gut microbiota development and aging. Our findings confirmed the main stages in microbial richness development and revealed specific core microbiota associated with different age stages. Moreover, the shotgun metagenomic approach allowed the disentangling of the functional changes in the microbiome across the human life span, particularly in diet-related metabolism, which is probably correlated to bacterial co-evolution with dietary habits. Notably, our study also uncovered positive correlations with vitamin synthesis in early life, suggesting a possible impact of the microbiota on human physiology.


Assuntos
Microbioma Gastrointestinal , Microbiota , Humanos , Microbioma Gastrointestinal/genética , Metagenoma/genética , Bactérias/genética , Vitaminas
17.
Microbiome Res Rep ; 2(2): 15, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38058405

RESUMO

The reconstruction of microbial genome sequences by bioinformatic pipelines and the consequent functional annotation of their genes' repertoire are fundamental activities aiming at unveiling their biological mechanisms, such as metabolism, virulence factors, and antimicrobial resistances. Here, we describe the development of the MEGAnnotator2 pipeline able to manage all next-generation sequencing methodologies producing short- and long-read DNA sequences. Starting from raw sequencing data, the updated pipeline can manage multiple analyses leading to the assembly of high-quality genome sequences and the functional classification of their genetic repertoire, providing the user with a useful report constituting features and statistics related to the microbial genome. The updated pipeline is fully automated from the installation to the delivery of the output, thus requiring minimal bioinformatics knowledge to be executed.

18.
Front Microbiol ; 14: 1323346, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38260892

RESUMO

Background: Variation in diversity and composition of saliva microbiota has been linked to weight status, but findings have been inconsistent. Focusing on clinically relevant conditions such as central obesity and using advanced sequencing techniques might fill in the gaps of knowledge. Aims: We investigated saliva microbiota with shallow metagenome sequencing in children with (n = 14) and without (n = 36) central obesity. Additionally, we examined the role of habitual food consumption on microbial enzymatic repertoire. Methods: Data comprised 50 children (50% male) with a mean age of 14.2 (SD 0.3) years, selected from the Finnish Health in Teens (Fin-HIT) cohort. Dietary scores for consumption frequency of sweet treats (STI), dairy products (DCI) and plants (PCI) were derived based on a self-administered food frequency questionnaire. Central obesity was defined based on waist-height ratio using the cut-off 0.5. Saliva samples were subjected to whole-metagenome shotgun sequencing, and taxonomic and functional profiling was achieved with METAnnotatorX2 bioinformatics platform. Results: Groups had an average 20 (95% CI 14-27) cm difference in waist circumference. We identified the lack of Pseudomonas guguagenesis and Prevotella scopos, oulorum and oris as putative biomarkers associated with central obesity and observed a total of 16 enzymatic reactions differing between the groups. DCI was associated with the highest number of enzyme profiles (122), followed by STI (60) and DCI (25) (Pearson correlation p < 0.05). Intriguingly, STI showed a high positive/negative correlation ratio (5.09), while DCI and PCI showed low ratios (0.54 and 0.33, respectively). Thus, the main driver of enzymatic reactions was STI, and the related pathways involved nitrate metabolism induced by Haemophilus parainfluenzae and Veilonella dispar among others. Conclusion: Clinically relevant differences in central obesity were only modestly reflected in the composition of saliva microbiota. Habitual consumption of sweet treats was a strong determinant of enzymatic reactions of saliva microbiota in children with and without central obesity. The clinical relevance of these findings warrants further studies.

19.
Microbiome ; 11(1): 27, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36782241

RESUMO

BACKGROUND: The correlation between the physical performance of athletes and their gut microbiota has become of growing interest in the past years, since new evidences have emerged regarding the importance of the gut microbiota as a main driver of the health status of athletes. In addition, it has been postulated that the metabolic activity of the microbial population harbored by the large intestine of athletes might influence their physical performances. Here, we analyzed 418 publicly available shotgun metagenomics datasets obtained from fecal samples of healthy athletes and healthy sedentary adults. RESULTS: This study evidenced how agonistic physical activity and related lifestyle can be associated with the modulation of the gut microbiota composition, inducing modifications of the taxonomic profiles with an enhancement of gut microbes able to produce short-fatty acid (SCFAs). In addition, our analyses revealed a correlation between specific bacterial species and high impact biological synthases (HIBSs) responsible for the generation of a range of microbially driven compounds such vitamin B12, amino acidic derivatives, and other molecules linked to cardiovascular and age-related health-risk reduction. CONCLUSIONS: Notably, our findings show how subsist an association between competitive athletes, and modulation of the gut microbiota, and how this modulation is reflected in the potential production of microbial metabolites that can lead to beneficial effects on human physical performance and health conditions. Video Abstract.


Assuntos
Microbioma Gastrointestinal , Microbiota , Adulto , Humanos , Microbioma Gastrointestinal/genética , Metagenoma , Bactérias/genética , Atletas , Fezes/microbiologia , Metagenômica
20.
Microb Biotechnol ; 16(9): 1774-1789, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37491806

RESUMO

The lower female reproductive tract is notoriously dominated by Lactobacillus species, among which Lactobacillus crispatus emerges for its protective and health-promoting activities. Although previous comparative genome analyses highlighted genetic and phenotypic diversity within the L. crispatus species, most studies have focused on the presence/absence of accessory genes. Here, we investigated the variation at the single nucleotide level within protein-encoding genes shared across a human-derived L. crispatus strain selection, which includes 200 currently available human-derived L. crispatus genomes as well as 41 chromosome sequences of such taxon that have been decoded in the framework of this study. Such data clearly pointed out the presence of intra-species micro-diversities that could have evolutionary significance contributing to phenotypical diversification by affecting protein domains. Specifically, two single nucleotide variations in the type II pullulanase gene sequence led to specific amino acid substitutions, possibly explaining the substantial differences in the growth performances and competition abilities observed in a multi-strain bioreactor culture simulating the vaginal environment. Accordingly, L. crispatus strains display different growth performances, suggesting that the colonisation and stable persistence in the female reproductive tract between the members of this taxon is highly variable.


Assuntos
Lactobacillus crispatus , Vagina , Lactobacillus crispatus/classificação , Lactobacillus crispatus/genética , Lactobacillus crispatus/crescimento & desenvolvimento , Lactobacillus crispatus/metabolismo , Genoma Bacteriano , Evolução Molecular , Vagina/química , Vagina/microbiologia , Humanos , Feminino , Lactobacillus/classificação , Lactobacillus/genética , Metabolismo dos Carboidratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA