Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biotechnol Bioeng ; 119(10): 2784-2793, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35822551

RESUMO

Virus-like particles (VLPs) induce strong humoral and cellular responses and have formed the basis of some currently licensed vaccines. Here, we present the method used for the production of R21, a VLP-based anti-sporozoite malaria vaccine, under current Clinical Good Manufacturing Practice regulations (cGMP). Previous preclinical studies in BALB/c mice showed that R21 produced almost complete protection against sporozoite challenge with transgenic Plasmodium berghei parasites. Here, we have modified the preclinical production process to enable the production of sufficient quantities of highly pure, clinical-grade material for use in human clinical trials. The R21 construct was re-engineered to include a C-tag to allow affinity-based separation from the major contaminant alcohol oxidase 1 (AOX 1, ~74 kDa). To our knowledge, this is the first use of C-tag technology to purify a VLP vaccine candidate for use in human clinical trials. The R21 vaccine has shown high-level efficacy in an African Phase IIb trial, and multiple clinical trials are underway to assess the safety and efficacy of the vaccine. Our findings support the future use of C-tag platform technologies to enable cGMP-compliant biomanufacturing of high purity yeast-expressed VLP-based vaccines for early phase clinical trials when clinical grade material is required in smaller quantities in a quick time frame.


Assuntos
Vacinas Antimaláricas , Malária , Saccharomycetales , Vacinas de Partículas Semelhantes a Vírus , Vacinas Virais , Animais , Antígenos de Superfície da Hepatite B/genética , Antígenos de Superfície da Hepatite B/metabolismo , Humanos , Malária/prevenção & controle , Vacinas Antimaláricas/genética , Vacinas Antimaláricas/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Pichia/genética
2.
NPJ Vaccines ; 3: 32, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30131879

RESUMO

Plasmodium falciparum reticulocyte-binding protein homolog 5 (PfRH5) is a leading asexual blood-stage vaccine candidate for malaria. In preparation for clinical trials, a full-length PfRH5 protein vaccine called "RH5.1" was produced as a soluble product under cGMP using the ExpreS2 platform (based on a Drosophila melanogaster S2 stable cell line system). Following development of a high-producing monoclonal S2 cell line, a master cell bank was produced prior to the cGMP campaign. Culture supernatants were processed using C-tag affinity chromatography followed by size exclusion chromatography and virus-reduction filtration. The overall process yielded >400 mg highly pure RH5.1 protein. QC testing showed the MCB and the RH5.1 product met all specified acceptance criteria including those for sterility, purity, and identity. The RH5.1 vaccine product was stored at -80 °C and is stable for over 18 months. Characterization of the protein following formulation in the adjuvant system AS01B showed that RH5.1 is stable in the timeframe needed for clinical vaccine administration, and that there was no discernible impact on the liposomal formulation of AS01B following addition of RH5.1. Subsequent immunization of mice confirmed the RH5.1/AS01B vaccine was immunogenic and could induce functional growth inhibitory antibodies against blood-stage P. falciparum in vitro. The RH5.1/AS01B was judged suitable for use in humans and has since progressed to phase I/IIa clinical trial. Our data support the future use of the Drosophila S2 cell and C-tag platform technologies to enable cGMP-compliant biomanufacture of other novel and "difficult-to-express" recombinant protein-based vaccines.

3.
Biotechnol J ; 11(3): 415-24, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26579700

RESUMO

During the manufacture of biopharmaceutical products, the final product must lie within strict pre-set specifications, for example the host cell protein (HCP) content. A number of specific HCPs have been identified in particular products and the interactions between product/HCPs have also been recently investigated; however, a comparison of the HCP dynamics between related cell lines and their response to early downstream processing to aid process development and cell line selection has not been published. We have utilised a proteomic approach coupled with an ultra scale-down study to determine the HCP profile dynamics, at harvest and during early downstream processing, across a panel of recombinant GS-CHOK1SV antibody producing cell lines. The results reveal that cell culture viability upon harvest has the greatest impact upon shear sensitivity and HCP concentration. Whilst the general HCP population/profile was broadly similar across the cell lines, the actual amounts of some specific HCPs in the supernatant differed and a number of cell line specific differences in the response to early downstream processing were observed. We anticipate that such knowledge can now be applied to cell line selection and downstream processing development to target reduction/removal of general and specific problematic HCPs before and during downstream processing.


Assuntos
Anticorpos Monoclonais/biossíntese , Técnicas de Cultura de Células/métodos , Proteômica/métodos , Animais , Células CHO , Proliferação de Células , Sobrevivência Celular , Cricetinae , Cricetulus
4.
Biotechnol Prog ; 29(1): 116-26, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23074084

RESUMO

Stirred tank bioreactors using suspension adapted mammalian cells are typically used for the production of complex therapeutic proteins. The hydrodynamic conditions experienced by cells within this environment have been shown to directly impact growth, productivity, and product quality and therefore an improved understanding of the cellular response is critical. Here we investigate the sub-lethal effects of different aeration strategies on Chinese hamster ovary cells during monoclonal antibody production. Two gas delivery systems were employed to study the presence and absence of the air-liquid interface: bubbled direct gas sparging and a non-bubbled diffusive silicone membrane system. Additionally, the effect of higher gas flow rate in the sparged bioreactor was examined. Both aeration systems were run using chemically defined media with and without the shear protectant Pluronic F-68 (PF-68). Cells were unable to grow with direct gas sparging without PF-68; however, when a silicone membrane aeration system was implemented growth was comparable to the sparged bioreactor with PF-68, indicating the necessity of shear protectants in the presence of bubbles. The cultures exposed to increased hydrodynamic stress were shown by flow cytometry to have decreased F-actin intensity within the cytoskeleton and enter apoptosis earlier. This indicates that these conditions elicit a sub-lethal physiological change in cells that would not be detected by the at-line assays which are normally implemented during cell culture. These physiological changes only result in a difference in continuous centrifugation performance under high flow rate conditions. Product quality was more strongly affected by culture age than the hydrodynamic conditions tested.


Assuntos
Anticorpos Monoclonais/biossíntese , Oxigênio/metabolismo , Animais , Reatores Biológicos , Células CHO , Dióxido de Carbono/química , Dióxido de Carbono/metabolismo , Células Cultivadas , Cromatografia Líquida de Alta Pressão , Cricetinae , Cricetulus , Hidrodinâmica , Oxigênio/química , Propriedades de Superfície
5.
Biotechnol Prog ; 29(3): 688-96, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23636936

RESUMO

The manufacture of complex therapeutic proteins using mammalian cells is well established, with several strategies developed to improve productivity. The application of sustained mild hypothermic conditions during culture has been associated with increases in product titer and improved product quality. However, despite associated cell physiological effects, very few studies have investigated the impact on downstream processing (DSP). Characterization of cells grown under mild hypothermic conditions demonstrated that the stationary phase was prolonged by delaying the onset of apoptosis. This enabled cells to maintain viability for extended periods and increase volumetric productivity from 0.74 to 1.02 g L(-1) . However, host cell proteins, measured by ELISA, increased by ∼50%, attributed to the extended time course and higher peak and harvest cell densities. The individual components making up this impurity, as determined by SELDI-TOF MS and 2D-PAGE, were shown to be largely comparable. Under mild hypothermic conditions, cells were less shear sensitive than those maintained at 37°C, enhancing the preliminary primary recovery step. Adaptive changes in membrane fluidity were further investigated by adopting a pronounced temperature shift immediately prior to primary recovery and the improvement observed suggests that such a strategy may be implementable when shear sensitivity is of concern. Early and late apoptotic cells were particularly susceptible to shear, at either temperature, even under the lowest shear rate investigated. These findings demonstrate the importance of considering the impact of cell culture strategies and cell physiology on DSP, by implementing a range of experimental methods for process characterization.


Assuntos
Técnicas de Cultura de Células/métodos , Proteínas/metabolismo , Animais , Apoptose/fisiologia , Fenômenos Biomecânicos , Células CHO , Tamanho Celular , Sobrevivência Celular/fisiologia , Centrifugação , Temperatura Baixa , Cricetinae , Cricetulus , Eletroforese em Gel Bidimensional , Glicosilação , Espectrometria de Massas , Proteínas/análise , Proteínas/química , Estresse Mecânico
6.
Biotechnol Prog ; 28(4): 1037-44, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22736545

RESUMO

Protein A chromatography is a critical and 'gold-standard' step in the purification of monoclonal antibody (mAb) products. Its ability to remove >98% of impurities in a single step alleviates the burden on subsequent process steps and facilitates the implementation of platform processes, with a minimal number of chromatographic steps. Here, we have evaluated four commercially available protein A chromatography matrices in terms of their ability to remove host cell proteins (HCPs), a complex group of process related impurities that must be removed to minimal levels. SELDI-TOF MS was used as a screening tool to generate an impurity profile fingerprint for each resin and indicated a number of residual impurities present following protein A chromatography, agreeing with HCP ELISA. Although many of these were observed for all matrices there was a significantly elevated level of impurity binding associated with the resin based on controlled pore glass under standard conditions. Use of null cell line supernatant with and without spiked purified mAb demonstrated the interaction of HCPs to be not only with the resin back-bone but also with the bound mAb. A null cell line column overload and sample enrichment method before 2D-PAGE was then used to determine individual components associated with resin back-bone adsorption. The methods shown allow for a critical analysis of HCP removal during protein A chromatography. Taken together they provide the necessary process understanding to allow process engineers to identify rational approaches for the removal of prominent HCPs.


Assuntos
Anticorpos Monoclonais/isolamento & purificação , Cromatografia de Afinidade/métodos , Imunoglobulina G/isolamento & purificação , Proteínas/química , Proteína Estafilocócica A/química , Adsorção , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/metabolismo , Células CHO , Técnicas de Cultura de Células , Cromatografia de Afinidade/instrumentação , Cricetinae , Imunoglobulina G/química , Imunoglobulina G/genética , Imunoglobulina G/metabolismo , Ligação Proteica , Proteínas/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA