Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Inorg Biochem ; 102(4): 882-91, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18267343

RESUMO

New substituted benzyl iminoether derivatives of the type cis- and trans-[PtCl(2){E-N(H)C(OMe)CH(2)-C(6)H(4)-p-R}(2)] (R=Me (1a, 2a), OMe (3a, 4a), F (5a, 6a)) have been synthesized and characterized by elemental analyses, FT-IR spectroscopy and NMR techniques. The iminoether ligands are in the E configuration, which is stable in solution and in the solid state, as confirmed by the (1)H NMR data. Complex trans-[PtCl(2){E-N(H)C(OMe)CH(2)-C(6)H(4)-p-F}(2)] (6a) was also characterized by an X-ray diffraction study. Complexes 1a-6a have been tested against a panel of human tumor cell lines in order to evaluate their cytotoxic activity. cis-Isomers were significant more potent than the corresponding trans-isomers against all tumor cell lines tested; moreover, complexes 1a and 5a showed IC(50) values from about 2-fold to 6-fold lower than those exhibited by cisplatin, used as reference platinum anticancer drug.


Assuntos
Éteres/química , Compostos Organoplatínicos/síntese química , Compostos Organoplatínicos/farmacologia , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Compostos Organoplatínicos/química , Espectrofotometria Infravermelho , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
2.
Dalton Trans ; (2): 315-25, 2005 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-15616720

RESUMO

The reaction of [Pt3(mu-CO)3(PCy3)3](1) with one mole-equivalent of iodo-acetonitrile was quantitative at -70 degrees C giving the oxidative addition product [Pt3(mu-CO)3(PCy3)3(I)(CH2CN)](2). Fragmentation of was observed in solution giving [Pt2I(CH2CN)(CO)2(PCy3)2](3) which is the major product at room temperature if the starting cluster/reactant ratio is equal to or less than 1 to 1.5. Dimer 3 decomposes slowly in solution giving [Pt2I2(CO)2(PCy3)2](4a) and succinonitrile. Monomer [PtI(CH2CN)(CO)(PCy3)] was the final product of the reaction when using excess of iodo-acetonitrile. The reactions of with one mole-equivalent of halogens X2 gave the new 44-electron clusters [Pt3X(micro-CO)2(micro-X)(PCy3)3](X = I2(7a) or Br2(7b)) by oxidative addition followed by substitution of CO by X-. Fragmentation of and took place in solution when using one and a half mole-equivalents of X2 giving dimers 4a and [Pt2Br2(CO)2(PCy3)2](4b) as well as [Pt2X2(mu-X)2(CO)2(PCy3)2]. Monomers cis-[PtX2(CO)(PCy3)] were the final products of the reaction of with excess of halogens. Insertion of SnCl2 was observed into the Pt-Pt bond but not into the Pt-X bond, when equimolar amounts of SnCl2 x 2H2O were added to a solution of 4a or its chloro-analogue giving [Pt2X2(micro-SnCl2)(CO)2(PCy3)2]. The Pt(I) dimers have unusually small J(Pt-Pt) values as observed by 195Pt NMR and calculated by DFT. These values showed periodic changes comparing 4a and its analogues with other halides and mixed halide dimers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA