Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
EMBO J ; 40(14): e106111, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34018220

RESUMO

Mycobacterium tuberculosis (Mtb) has evolved diverse cellular processes in response to the multiple stresses it encounters within the infected host. We explored available TnSeq datasets to identify transcription factors (TFs) that are essential for Mtb survival inside the host. The analysis identified a single TF, Rv1332 (AosR), conserved across actinomycetes with a so-far uncharacterized function. AosR mitigates phagocyte-derived oxidative and nitrosative stress, thus promoting mycobacterial growth in the murine lungs and spleen. Oxidative stress induces formation of a single intrasubunit disulphide bond in AosR, which in turn facilitates AosR interaction with an extracytoplasmic-function sigma factor, SigH. This leads to the specific upregulation of the CysM-dependent non-canonical cysteine biosynthesis pathway through an auxiliary intragenic stress-responsive promoter, an axis critical in detoxifying host-derived oxidative and nitrosative radicals. Failure to upregulate AosR-dependent cysteine biosynthesis during the redox stress causes differential expression of 6% of Mtb genes. Our study shows that the AosR-SigH pathway is critical for detoxifying host-derived oxidative and nitrosative radicals to enhance Mtb survival in the hostile intracellular environment.


Assuntos
Actinobacteria/genética , Homeostase/genética , Mycobacterium tuberculosis/genética , Fatores de Transcrição/genética , Animais , Proteínas de Bactérias/genética , Feminino , Regulação Bacteriana da Expressão Gênica/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Oxirredução , Estresse Oxidativo/genética , Regiões Promotoras Genéticas/genética , Fator sigma/genética , Transcrição Gênica/genética
2.
Mol Cell Biochem ; 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38814423

RESUMO

Cancer due to its heterogeneous nature and large prevalence has tremendous socioeconomic impacts on populations across the world. Therefore, it is crucial to discover effective panels of biomarkers for diagnosing cancer at an early stage. Cancer leads to alterations in cell growth and differentiation at the molecular level, some of which are very unique. Therefore, comprehending these alterations can aid in a better understanding of the disease pathology and identification of the biomolecules that can serve as effective biomarkers for cancer diagnosis. Metabolites, among other biomolecules of interest, play a key role in the pathophysiology of cancer whose levels are significantly altered while 'reprogramming the energy metabolism', a cellular condition favored in cancer cells which is one of the hallmarks of cancer. Metabolomics, an emerging omics technology has tremendous potential to contribute towards the goal of investigating cancer metabolites or the metabolic alterations during the development of cancer. Diverse metabolites can be screened in a variety of biofluids, and tumor tissues sampled from cancer patients against healthy controls to capture the altered metabolism. In this review, we provide an overview of different metabolomics approaches employed in cancer research and the potential of metabolites as biomarkers for cancer diagnosis. In addition, we discuss the challenges associated with metabolomics-driven cancer research and gaze upon the prospects of this emerging field.

3.
Methods ; 220: 29-37, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37918646

RESUMO

Proteins are crucial research molecules in modern biology. Almost every biological research area needs protein-based assays to answer the research questions. The study of the total protein content of a biological sample known as Proteomics, is one of the highly rated qualitative and quantitative approach to address numerous biological problems including clinical research. The key step to successfully generate high quality proteomics data is the efficient extraction of proteins from biological samples. Although different methods are in use for protein extraction from a wide variety of samples, however, because of their prolonged protocol and multiple steps involved, final protein yield is sacrificed. Here, we have shown the development of a simple single step method for extraction of proteins from mammalian cell lines as well as tissue samples in an effective and reproducible manner. This method is based on lysis of samples directly in a modified lysis buffer without CHAPS (7 M Urea, 2 M Thiourea, and 10 mM Tris-Cl; pH 8.5) that is compatible with gel based and gel free approaches. This developed protocol is reliable and should be useful for a wide range of proteomic studies involving various biological samples.


Assuntos
Proteínas , Proteômica , Animais , Proteômica/métodos , Linhagem Celular , Ureia , Eletroforese em Gel de Poliacrilamida , Mamíferos
4.
Expert Rev Proteomics ; 17(6): 433-451, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32576061

RESUMO

INTRODUCTION: Proteomic research has been extensively used to identify potential biomarkers or targets for various diseases. Advances in mass spectrometry along with data analytics have led proteomics to become a powerful tool for exploring the critical molecular players associated with diseases, thereby, playing a significant role in the development of proteomic applications for the clinic. AREAS COVERED: This review presents recent advances in the development and clinical applications of proteomics in India toward understanding various diseases including cancer, metabolic diseases, and reproductive diseases. Keywords combined with 'clinical proteomics in India' 'proteomic research in India' and 'mass spectrometry' were used to search PubMed. EXPERT OPINION: The past decade has seen a significant increase in research in clinical proteomics in India. This approach has resulted in the development of proteomics-based marker technologies for disease management in the country. The majority of these investigations are still in the discovery phase and efforts have to be made to address the intended clinical use so that the identified potential biomarkers reach the clinic. To move toward this necessity, there is a pressing need to establish some key infrastructure requirements and meaningful collaborations between the clinicians and scientists which will enable more effective solutions to address health issues specific to India.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias/genética , Proteoma/genética , Proteômica/tendências , Humanos , Índia , Espectrometria de Massas , Neoplasias/diagnóstico
5.
Metabolomics ; 16(2): 21, 2020 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-31980945

RESUMO

INTRODUCTION: The metabolic shift induced by hypoxia in cancer cells has not been explored at volatilomic level so far. The volatile organic metabolites (VOMs) constitute an important part of the metabolome and their investigation could provide us crucial aspects of hypoxia driven metabolic reconfiguration in cancer cells. OBJECTIVE: To identify the altered volatilomic response induced by hypoxia in metastatic/aggressive breast cancer (BC) cells. METHODS: BC cells were cultured under normoxic and hypoxic conditions and VOMs were extracted using HS-SPME approach and profiled by standard GC-MS system. Univariate and multivariate statistical approaches (p < 0.05, Log2 FC ≥ 0.58/≤ - 0.58, PC1 > 0.13/< - 0.13) were applied to select the VOMs differentially altered after hypoxic treatment. Metabolic pathway analysis was also carried out in order to identify altered metabolic pathways induced by the hypoxia in the selected BC cells. RESULTS: Overall, 20 VOMs were found to be significantly altered (p < 0.05, PC1 > 0.13/< - 0.13) upon hypoxic exposure to BC cells. Further, cell line specific volatilomic alterations were extracted by comparative metabolic analysis of aggressive (MDA-MB-231) vs. non-aggressive (MCF-7) cells incubated under hypoxia and normoxia. In this case, 15 and 12 VOMs each were found to be significantly altered in aggressive cells when exposed to hypoxic and normoxic condition respectively. Out of these, 9 VOMs were found to be uniquely associated with hypoxia, 6 were specific to normoxia and 6 were found common to both the conditions. Formic acid was identified as the most prominent molecule with higher abundance levels in aggressive as compared to non-aggressive cells in both conditions. Furthermore, metabolic pathway analyses revealed that fatty acid biosynthesis and nicotinate and nicotinamide metabolism were significantly altered in aggressive as compared to non-aggressive cells in normoxia and hypoxia respectively. CONCLUSIONS: Higher formate overflow was observed in aggressive cells compared to non-aggressive cells incubated under both the conditions, reinforcing its correlation with aggressive and invasive cancer type. Moreover, under hypoxia, aggressive cells preferred to be bioenergetically more efficient whereas, under normoxia, fatty acid biosynthesis was favoured when compared to non-aggressive cells.


Assuntos
Neoplasias da Mama/metabolismo , Hipóxia Celular , Compostos Orgânicos Voláteis/metabolismo , Neoplasias da Mama/patologia , Feminino , Humanos , Células MCF-7 , Metabolômica , Análise Multivariada , Células Tumorais Cultivadas , Compostos Orgânicos Voláteis/análise
6.
Metabolomics ; 14(8): 107, 2018 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-30830381

RESUMO

INTRODUCTION: Invasive ductal carcinoma (IDC) is a type of breast cancer, usually detected in advanced stages due to its asymptomatic nature which ultimately leads to low survival rate. Identification of urinary metabolic adaptations induced by IDC to understand the disease pathophysiology and monitor therapy response would be a helpful approach in clinical settings. Moreover, its non-invasive and cost effective strategy better suited to minimize apprehension among high risk population. OBJECTIVE: This study aims toward investigating the urinary metabolic alterations of IDC by targeted (LC-MRM/MS) and untargeted (GC-MS) approaches for the better understanding of the disease pathophysiology and monitoring therapy response. METHODS: Urinary metabolic alterations of IDC subjects (63) and control subjects (63) were explored by targeted (LC-MRM/MS) and untargeted (GC-MS) approaches. IDC specific urinary metabolomics signature was extracted by applying both univariate and multivariate statistical tools. RESULTS: Statistical analysis identified 39 urinary metabolites with the highest contribution to metabolomic alterations specific to IDC. Out of which, 19 metabolites were identified from targeted LC-MRM/MS analysis, while 20 were identified from the untargeted GC-MS analysis. Receiver operator characteristic (ROC) curve analysis evidenced 6 most discriminatory metabolites from each type of approach that could differentiate between IDC subjects and controls with higher sensitivity and specificity. Furthermore, metabolic pathway analysis depicted several dysregulated pathways in IDC including sugar, amino acid, nucleotide metabolism, TCA cycle etc. CONCLUSIONS: Overall, this study provides valuable inputs regarding altered urinary metabolites which improved our knowledge on urinary metabolomic alterations induced by IDC. Moreover, this study identified several dysregulated metabolic pathways which offer further insight into the disease pathophysiology.


Assuntos
Neoplasias da Mama/metabolismo , Carcinoma Ductal de Mama/metabolismo , Cromatografia Líquida/métodos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Metaboloma , Espectrometria de Massas em Tandem/métodos , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/patologia , Carcinoma Ductal de Mama/patologia , Estudos de Casos e Controles , Feminino , Humanos , Redes e Vias Metabólicas , Curva ROC
7.
Anal Bioanal Chem ; 410(18): 4459-4468, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29732495

RESUMO

Saliva is possibly the easiest biofluid to analyse and, despite its simple composition, contains relevant metabolic information. In this work, we explored the potential of the volatile composition of saliva samples as biosignatures for breast cancer (BC) non-invasive diagnosis. To achieve this, 106 saliva samples of BC patients and controls in two distinct geographic regions in Portugal and India were extracted and analysed using optimised headspace solid-phase microextraction gas chromatography mass spectrometry (HS-SPME/GC-MS, 2 mL acidified saliva containing 10% NaCl, stirred (800 rpm) for 45 min at 38 °C and using the CAR/PDMS SPME fibre) followed by multivariate statistical analysis (MVSA). Over 120 volatiles from distinct chemical classes, with significant variations among the groups, were identified. MVSA retrieved a limited number of volatiles, viz. 3-methyl-pentanoic acid, 4-methyl-pentanoic acid, phenol and p-tert-butyl-phenol (Portuguese samples) and acetic, propanoic, benzoic acids, 1,2-decanediol, 2-decanone, and decanal (Indian samples), statistically relevant for the discrimination of BC patients in the populations analysed. This work defines an experimental layout, HS-SPME/GC-MS followed by MVSA, suitable to characterise volatile fingerprints for saliva as putative biosignatures for BC non-invasive diagnosis. Here, it was applied to BC samples from geographically distant populations and good disease separation was obtained. Further studies using larger cohorts are therefore very pertinent to challenge and strengthen this proof-of-concept study. Graphical abstract ᅟ.


Assuntos
Neoplasias da Mama/diagnóstico , Saliva/química , Compostos Orgânicos Voláteis/análise , Adolescente , Adulto , Neoplasias da Mama/etnologia , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Geografia , Humanos , Concentração de Íons de Hidrogênio , Índia , Metabolômica , Pessoa de Meia-Idade , Concentração Osmolar , Portugal , Estudo de Prova de Conceito , Microextração em Fase Sólida , Temperatura , Adulto Jovem
8.
Proteomics ; 16(17): 2403-18, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27324523

RESUMO

Globally, breast cancer is the second most common cancer among women. Although biomarker discoveries through various proteomic approaches of tissue and serum samples have been studied in breast cancer, urinary proteome alterations in breast cancer are least studied. Urine being a noninvasive biofluid and a significant source of proteins, it has the potential in early diagnosis of breast cancer. This study used complementary quantitative gel-based and gel-free proteomic approaches to find a panel of urinary protein markers that could discriminate HER2 enriched (HE) subtype breast cancer from the healthy controls. A total of 183 differentially expressed proteins were identified using three complementary approaches, namely 2D-DIGE, iTRAQ, and sequential window acquisition of all theoretical mass spectra. The differentially expressed proteins were subjected to various bioinformatics analyses for deciphering the biological context of these proteins using protein analysis through evolutionary relationships, database for annotation, visualization and integrated discovery, and STRING. Multivariate statistical analysis was undertaken to identify the set of most significant proteins, which could discriminate HE breast cancer from healthy controls. Immunoblotting and MRM-based validation in a separate cohort testified a panel of 21 proteins such as zinc-alpha2-glycoprotein, A2GL, retinol-binding protein 4, annexin A1, SAP3, SRC8, gelsolin, kininogen 1, CO9, clusterin, ceruloplasmin, and α1-antitrypsin could be a panel of candidate markers that could discriminate HE breast cancer from healthy controls.


Assuntos
Neoplasias da Mama/urina , Proteoma/análise , Receptor ErbB-2/análise , Mama/patologia , Neoplasias da Mama/metabolismo , Feminino , Humanos , Espectrometria de Massas , Pessoa de Meia-Idade , Mapas de Interação de Proteínas , Proteoma/metabolismo , Proteômica , Receptor ErbB-2/metabolismo , Eletroforese em Gel Diferencial Bidimensional
9.
Int J Biol Macromol ; 261(Pt 1): 129655, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38266830

RESUMO

Cranberry phytochemicals are known to possess antiviral activities. In the current study, we explored the therapeutic potential of cranberry against SARS-CoV-2 by targeting its main protease (Mpro) enzyme. Firstly, phytochemicals of cranberry origin were identified from three independent databases. Subsequently, virtual screening, using molecular docking and molecular dynamics simulation approaches, led to the identification of three lead phytochemicals namely, cyanidin 3-O-galactoside, ß-carotene and epicatechin. Furthermore, in vitro enzymatic assays revealed that cyanidin 3-O-galactoside had the highest inhibitory potential with IC50 of 9.98 µM compared to the other two phytochemicals. Cyanidin 3-O-galactoside belongs to the class of anthocyanins. Anthocyanins extracted from frozen cranberry also exhibited the highest inhibitory potential with IC50 of 23.58 µg/ml compared to the extracts of carotenoids and flavanols, the class for ß-carotene and epicatechin, respectively. Finally, we confirm the presence of the phytochemicals in the cranberry extracts using targeted LC-MS/MS analysis. Our results, therefore, indicate that the identified cranberry-derived bioactive compounds as well as cranberry could be used for therapeutic interventions against SARS-CoV-2.


Assuntos
COVID-19 , Catequina , Proteases 3C de Coronavírus , Vaccinium macrocarpon , Antocianinas , Catequina/farmacologia , Cromatografia Líquida , Simulação de Acoplamento Molecular , beta Caroteno , SARS-CoV-2 , Espectrometria de Massas em Tandem , Galactosídeos , Simulação de Dinâmica Molecular , Antivirais/farmacologia , Inibidores de Proteases/farmacologia , Compostos Fitoquímicos/farmacologia
10.
J Proteomics ; 303: 105224, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38866132

RESUMO

Acute myeloid leukemia (AML) is an aggressive form of blood cancer and clinically highly heterogeneous characterized by the accumulation of clonally proliferative immature precursors of myeloid lineage leading to bone marrow failure. Although, the current diagnostic methods for AML consist of cytogenetic and molecular assessment, there is a need for new markers that can serve as useful candidates in diagnosis, prognosis and understanding the pathophysiology of the disease. This study involves the investigation of alterations in the bone marrow interstitial fluid and serum proteome of AML patients compared to controls using label-free quantitative proteomic approach. A total of 201 differentially abundant proteins were identified in AML BMIF, while in the case of serum 123 differentially abundant proteins were identified. The bioinformatics analysis performed using IPA revealed several altered pathways including FAK signalling, IL-12 signalling and production of macrophages etc. Verification experiments were performed in a fresh independent cohort of samples using MRM assays led to the identification of a panel of three proteins viz., PPBP, APOH, ENOA which were further validated in a new cohort of serum samples by ELISA. The three-protein panel could be helpful in the diagnosis, prognosis and understanding of the pathophysiology of AML in the future. BIOLOGICAL SIGNIFICANCE: Acute Myeloid Leukemia (AML) is a type haematological malignancy which constitute one third of total leukemias and it is the most common acute leukemia in adults. In the current clinical practice, the evaluation of diagnosis and progression of AML is largely based on morphologic, immunophenotypic, cytogenetic and molecular assessment. There is a need for new markers/signatures which can serve as useful candidates in diagnosis and prognosis. The present study aims to identify and validate candidate biosignature for AML which can be useful in diagnosis, prognosis and understand the pathophysiology of the disease. Here, we identified 201 altered proteins in AML BMIF and 123 in serum. Among these altered proteins, a set of three proteins viz., pro-platelet basic protein (CXCL7), enolase 1 (ENO1) and beta-2-glycoprotein 1 (APOH) were significantly increased in AML BMIF and serum suggest that this panel of proteins could help in future AML disease management and thereby improving the survival expectancy of AML patients.


Assuntos
Medula Óssea , Líquido Extracelular , Leucemia Mieloide Aguda , Proteoma , Humanos , Leucemia Mieloide Aguda/sangue , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/metabolismo , Masculino , Proteoma/análise , Proteoma/metabolismo , Feminino , Pessoa de Meia-Idade , Medula Óssea/metabolismo , Medula Óssea/patologia , Adulto , Líquido Extracelular/metabolismo , Biomarcadores Tumorais/sangue , Proteínas de Neoplasias/sangue , Proteínas de Neoplasias/metabolismo , Idoso , Proteômica/métodos
11.
Biochem Biophys Rep ; 35: 101512, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37521372

RESUMO

Mycobacterium tuberculosis encounters diverse microenvironments, including oxidative assault (ROS and RNS), when it attempts to establish itself within its human host. Therefore, redox sensory and regulation processes are assumed significant importance, as these are essential processes for M. tuberculosis to survive under these hostile conditions. M. tuberculosis contains thioredoxin system to maintain redox homeostasis, which establish a balance between the thiol/dithiol couple. Still very less is known about it. In the present study, we attempted to capture the targets of all the M. tuberculosis thioredoxin proteins (viz., TrxB and TrxC) and a thioredoxin-like protein, NrdH, under aerobic and hypoxic conditions by performing thioredoxin trapping chromatography followed by mass spectrometry. We found that TrxC captured the maximum number of targets in both the physiological conditions and most of the targets of TrxB and NrdH showing overlap with targets of TrxC, indicating that TrxC acts as main thioredoxin. Further the PANTHER classification system provides involvement of targets in various metabolic processes and Gene Ontology analysis suggests that glutamine biosynthetic process and Fe-S cluster biosynthesis are the most enriched processes in the target list of TrxC and TrxB respectively. Also, we suggest that the thioredoxin system might play an important role under hypoxia by targeting those proteins which are responsible to sense and maintain hypoxic conditions. Furthermore, our studies establish a link between TrxB and iron-sulfur cluster biogenesis in M. tuberculosis. Ultimately, these findings open a new direction to target the thioredoxin system for screening new anti-mycobacterial drug targets.

12.
J Proteomics ; 253: 104463, 2022 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-34954397

RESUMO

Rabies is a fatal zoonotic disease caused by rabies virus (RABV). Despite the existence of control measures, dog-transmitted human rabies accounts for ˃95% reported cases due to unavailability of sensitive diagnostic methods, inadequate understanding of disease progression and absence of therapeutics. In addition, host factors and their role in RABV infection are poorly understood. In this study, we used 8-plex iTRAQ coupled with HRMS approach to identify differentially abundant proteins (DAPs) of dog brain associated with furious rabies virus infection. Total 40 DAPs including 26 down-regulated and 14 up-regulated proteins were statistically significant in infected samples. GO annotation and IPA showed that calcium signaling and calcium transport, efficient neuronal function, metabolic pathway associated proteins were mostly altered during this infection. Total 34 proteins including 10 down-regulated proteins pertaining to calcium signaling and calcium transport pathways were successfully verified by qRT-PCR and two proteins were verified by western blot, thereby suggesting these pathways may play an important role in this infection. This study provides the map of altered brain proteins and some insights into the molecular pathophysiology associated with furious rabies virus infection. However, further investigations are required to understand their role in disease mechanism. SIGNIFICANCE: Transmission of rabies by dogs poses the greatest hazard world-wide and the rare survival of post-symptomatic patients as well as severe neurological and immunological problems pose a question to understand the molecular mechanism involved in rabies pathogenesis. However, information regarding host factors and their function in RABV infection is still inadequate. Our study has used an advanced quantitative proteomics approach i.e. 8-plex iTRAQ coupled with HRMS and identified 40 DAPs in furious rabies infected dog brain tissues compared to the controls. Further analysis showed that calcium signaling and transport pathway, efficient neuronal functions and metabolic pathway associated brain proteins were most altered during furious rabies virus infection. This data provides a map of altered brain proteins which may have role in furious rabies virus infection. Hence, this will improve our understanding of the molecular pathogenesis of RABV infection.


Assuntos
Vírus da Raiva , Raiva , Animais , Encéfalo/metabolismo , Cães , Humanos , Neurônios/patologia , Proteômica , Raiva/veterinária , Vírus da Raiva/fisiologia
13.
Metabolites ; 12(1)2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-35050157

RESUMO

The urinary volatomic profiling of Indian cohorts composed of 28 lung cancer (LC) patients and 27 healthy subjects (control group, CTRL) was established using headspace solid phase microextraction technique combined with gas chromatography mass spectrometry methodology as a powerful approach to identify urinary volatile organic metabolites (uVOMs) to discriminate among LC patients from CTRL. Overall, 147 VOMs of several chemistries were identified in the intervention groups-including naphthalene derivatives, phenols, and organosulphurs-augmented in the LC group. In contrast, benzene and terpenic derivatives were found to be more prevalent in the CTRL group. The volatomic data obtained were processed using advanced statistical analysis, namely partial least square discriminative analysis (PLS-DA), support vector machine (SVM), random forest (RF), and multilayer perceptron (MLP) methods. This resulted in the identification of nine uVOMs with a higher potential to discriminate LC patients from CTRL subjects. These were furan, o-cymene, furfural, linalool oxide, viridiflorene, 2-bromo-phenol, tricyclazole, 4-methyl-phenol, and 1-(4-hydroxy-3,5-di-tert-butylphenyl)-2-methyl-3-morpholinopropan-1-one. The metabolic pathway analysis of the data obtained identified several altered biochemical pathways in LC mainly affecting glycolysis/gluconeogenesis, pyruvate metabolism, and fatty acid biosynthesis. Moreover, acetate and octanoic, decanoic, and dodecanoic fatty acids were identified as the key metabolites responsible for such deregulation. Furthermore, studies involving larger cohorts of LC patients would allow us to consolidate the data obtained and challenge the potential of the uVOMs as candidate biomarkers for LC.

14.
RSC Adv ; 11(1): 397-407, 2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-35423059

RESUMO

The need of identifying alternative therapeutic targets for invasive ductal carcinoma (IDC) of the breast with high specificity and sensitivity for effective therapeutic intervention is crucial for lowering the risk of fatality. Lipidomics has emerged as a key area for the discovery of potential candidates owing to its several shared pathways between cancer cell proliferation and survival. In the current study, we performed comparative phospholipidomic analysis of IDC, benign and control tissue samples of the breast to identify the significant lipid alterations associated with malignant transformation. A total of 33 each age-matched tissue samples from malignant, benign and control were analyzed to identify the altered phospholipids by using liquid chromatography-multiple reaction monitoring mass spectrometry (LC-MRM/MS). A combination of univariate and multivariate statistical approaches was used to select the phospholipid species with the highest contribution in group segregation. Furthermore, these altered phospholipids were structurally confirmed by tandem mass spectrometry. A total of 244 phospholipids were detected consistently at quantifiable levels, out of which 32 were significantly altered in IDC of the breast. Moreover, in pairwise comparison of IDC against benign and control samples, 11 phospholipids were found to be significantly differentially expressed. Particularly, LPI 20:3, PE (22:1/22:2), LPE 20:0 and PC (20:4/22:4) were observed to be most significantly associated with IDC tissue samples. Apart from that, we also identified that long-chain unsaturated fatty acids were enriched in the IDC tissue samples as compared to benign and control samples, indicating its possible association with the invasive phenotype.

15.
Biochim Biophys Acta Proteins Proteom ; 1868(10): 140469, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32554214

RESUMO

Diabetes, a multifactorial disorder is characterized by elevated blood glucose levels resulting from changes in lifestyle, genetic and epigenetic changes or aberrations in proteome. In addition, alterations in post-translational modifications (PTMs) and protein-protein interactions (PPIs) also contribute to the development of diabetes pathogenesis. Recent advances in omics technologies have broadened the perspective for systematic investigation of proteome alterations in understanding the pathogenesis of diabetes. Further, PPIs are central to cellular signaling in all living organisms and deranged PPIs lead to diabetic complications. In this context, affinity purification mass spectrometry (AP-MS) along with diverse bioinformatic approaches has proven to be competent in mapping large-scale PPI networks around the critical players in the glucose homeostasis. In this review, we revisit the application of proteomic approaches in investigating proteome alterations and probing PPI networks for a better understanding of the underlying intricacies of the major signaling pathways in altered glucose homeostasis.


Assuntos
Diabetes Mellitus/etiologia , Diabetes Mellitus/metabolismo , Suscetibilidade a Doenças , Espectrometria de Massas , Proteoma , Proteômica , Animais , Biomarcadores , Diabetes Mellitus/diagnóstico , Meio Ambiente , Predisposição Genética para Doença , Humanos , Espectrometria de Massas/métodos , Ligação Proteica , Mapeamento de Interação de Proteínas/métodos , Mapas de Interação de Proteínas , Proteômica/métodos , Transdução de Sinais
16.
Int J Oncol ; 57(1): 325-337, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32377723

RESUMO

Multiple myeloma (MM) is a plasma cell­associated cancer and accounts for 13% of all hematological malignancies, worldwide. MM still remains an incurable plasma cell malignancy with a poor prognosis due to a lack of suitable markers. Therefore, discovering novel markers and targets for diagnosis and therapeutics of MM is essential. The present study aims to identify markers associated with MM malignancy using patient­derived MM mononuclear cells (MNCs). Label­free quantitative proteomics analysis revealed a total of 192 differentially regulated proteins, in which 79 proteins were upregulated and 113 proteins were found to be downregulated in MM MNCs as compared to non­hematological malignant samples. The identified differentially expressed candidate proteins were analyzed using various bioinformatics tools, including Ingenuity Pathway Analysis (IPA), Protein Analysis THrough Evolutionary Relationships (PANTHER), Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) and Database for Annotation, Visualization and Integrated Discovery (DAVID) to determine their biological context. Among the 192 candidate proteins, marginal zone B and B1 cell specific protein (MZB1) was investigated in detail using the RPMI-8226 cell line model of MM. The functional studies revealed that higher expression of MZB1 is associated with promoting the progression of MM pathogenesis and could be established as a potential target for MM in the future.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Biomarcadores Tumorais/metabolismo , Mieloma Múltiplo/patologia , Proteínas Adaptadoras de Transdução de Sinal/análise , Idoso , Biomarcadores Tumorais/análise , Biópsia , Medula Óssea/patologia , Linhagem Celular Tumoral , Biologia Computacional , Progressão da Doença , Regulação para Baixo , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Mieloma Múltiplo/diagnóstico , Proteômica , Regulação para Cima
17.
Front Oncol ; 10: 566804, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33585190

RESUMO

Multiple myeloma (MM) is a plasma cell-associated cancer and exists as the second most common hematological malignancy worldwide. Although researchers have been working on MM, a comprehensive quantitative Bone Marrow Interstitial Fluid (BMIF) and serum proteomic analysis from the same patients' samples is not yet reported. The present study involves the investigation of alterations in the BMIF and serum proteome of MM patients compared to controls using multipronged quantitative proteomic approaches viz., 2D-DIGE, iTRAQ, and SWATH-MS. A total of 279 non-redundant statistically significant differentially abundant proteins were identified by the combination of three proteomic approaches in MM BMIF, while in the case of serum 116 such differentially abundant proteins were identified. The biological context of these dysregulated proteins was deciphered using various bioinformatic tools. Verification experiments were performed in a fresh independent cohort of samples using immunoblotting and mass spectrometry based SRM assays. Thorough data evaluation led to the identification of a panel of five proteins viz., haptoglobin, kininogen 1, transferrin, and apolipoprotein A1 along with albumin that was validated using ELISA in a larger cohort of serum samples. This panel of proteins could serve as a useful tool in the diagnosis and understanding of the pathophysiology of MM in the future.

18.
RSC Adv ; 9(51): 29522-29532, 2019 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-35531512

RESUMO

Multiple myeloma (MM) is the second most prevalent hematological malignancy characterized by rapid proliferation of plasma cells, which leads to overproduction of antibodies. MM affects around 15% of all hemato-oncology cases across the world. The present study involves identification of metabolomic alterations in the serum of an MM cohort compared to healthy controls using both LC-MRM/MS based targeted and GC-MS based untargeted approaches. Several MM specific serum metabolomic signatures were observed in this study. A total of 54 metabolites were identified as being significantly altered in MM cohort, out of which, 26 metabolites were identified from LC-MRM/MS based targeted analysis, whereas 28 metabolites were identified from the GC-MS based untargeted analysis. Receiver operating characteristic (ROC) curve analysis demonstrated that six metabolites each from both the datasets can be projected as marker metabolites to discriminate MM subjects with higher specificity and sensitivity. Moreover, pathway analysis deciphered that several metabolic pathways were altered in MM including pyrimidine metabolism, purine metabolism, amino acid metabolism, nitrogen metabolism, sulfur metabolism, and the citrate cycle. Comprehensively, this study contributes valuable information regarding MM induced serum metabolite alterations and their pathways, which could offer further insights into this cancer.

19.
J Proteomics ; 209: 103504, 2019 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-31465861

RESUMO

Among the blood cancers, 13% mortality is caused by Multiple myeloma (MM) type of hematological malignancy. In spite of therapeutic advances in chemotherapy treatment, still MM remains an incurable disease is mainly due to emergence of chemoresistance. At present time, FDA approved bortezomib is the first line drug for MM treatment. However, like other chemotherapy, MM patients are acquiring resistance against bortezomib. The present study aims to identify and validate bortezomib resistant protein targets in MM using iTRAQ and label free quantitative proteomic approaches. 112 differentially expressed proteins were commonly found in both approaches with similar differential expression pattern. Exportin-1 (XPO1) protein was selected for further validation as its significant high expression was observed in both iTRAQ and label free analysis. Bioinformatic analysis of these common differentially expressed proteins showed a clear cluster of proteins such as SMC1A, RCC2, CSE1, NUP88, NUP50, TPR, HSPA14, DYNLL1, RAD21 and RANBP2 being associated with XPO1. Functional studies like cell count assay, flow cytometry assay and soft agar assay proved that XPO1 knock down in RPMI 8226R cell line results in re-sensitization to bortezomib drug. The mass spectrometry data are available via ProteomeXchange with identifier PXD013859. BIOLOGICAL SIGNIFICANCE: Multiple myeloma (MM) is a type of hematological malignancy which constitutes about 13% of all blood cell related malignancies. Chemoresistance is one of the major obstacles for the successful treatment for MM. Bortezomib is a first proteasome inhibitor drug, widely used in MM treatment. The present study aims to identify and validate bortezomib resistant protein targets in MM. Here, we identified 112 candidate proteins to be associated with bortezomib resistance using global quantitative proteomic analysis. Among these candidate proteins, we show that XPO1 plays crucial role in emerging bortezomib resistance using functional studies like cell count assay, flow cytometry assay and soft agar assay. XPO1 could be a potential therapeutic target for MM and development of inhibitors of XPO1 might help to cure MM.


Assuntos
Bortezomib/farmacologia , Resistencia a Medicamentos Antineoplásicos , Carioferinas/fisiologia , Mieloma Múltiplo/tratamento farmacológico , Proteômica/métodos , Receptores Citoplasmáticos e Nucleares/fisiologia , Antineoplásicos/farmacologia , Bortezomib/uso terapêutico , Contagem de Células , Linhagem Celular Tumoral , Biologia Computacional , Citometria de Fluxo , Técnicas de Silenciamento de Genes , Humanos , Carioferinas/genética , Receptores Citoplasmáticos e Nucleares/genética , Proteína Exportina 1
20.
Oncotarget ; 9(2): 2678-2696, 2018 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-29416801

RESUMO

Invasive ductal carcinoma (IDC) is the most common type of breast cancer and the leading cause of breast cancer related mortality. In the present study, metabolomic profiles of 72 tissue samples and 146 serum samples were analysed using targeted liquid chromatography multiple reaction monitoring mass spectrometry (LC-MRM/MS) and untargeted gas chromatography mass spectrometry (GC-MS) approaches. Combination of univariate and multivariate statistical treatment identified significant alterations of 42 and 32 metabolites in tissue and serum samples of IDC, respectively when compared to control. Some of the metabolite changes from tissue were also reflected in serum, indicating a bi-directional interaction of metabolites in IDC. Additionally, 8 tissue metabolites and 9 serum metabolites showed progressive change from control to benign to IDC suggesting their possible role in malignant transformation. We have identified a panel of three metabolites viz. tryptophan, tyrosine, and creatine in tissue and serum, which could be useful in screening of IDC subjects from both control and benign. The metabolomic alterations in IDC showed perturbations in purine and pyrimidine metabolism, amino sugar metabolism, amino acid metabolism, fatty acid biosynthesis etc. Comprehensively, this study provides valuable insights into metabolic adaptations of IDC, which can help to identify diagnostic markers as well as potential therapeutic targets.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA