Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
J Immunol ; 203(8): 2163-2170, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31527196

RESUMO

Glucocorticoid (GC) signaling in thymocytes shapes the TCR repertoire by antagonizing thymocyte negative selection. The transcription factors Nur77 and Helios, which are upregulated in TCR-signaled thymocytes, have been implicated in negative selection. In this study, we found that GCs inhibited Helios and, to a lesser extent, Nur77 upregulation in TCR-stimulated mouse thymocytes. Inhibition was increased by GC preincubation, and reductions in mRNA were prevented by a protein synthesis inhibitor, suggesting that GCs suppress indirectly via an intermediary factor. Upregulation of Helios in TCR-stimulated thymocytes was unaffected by deletion of Nur77, indicating Nur77 and Helios are regulated independently. Whereas CD4+ thymocytes are positively selected in wild-type AND TCR-transgenic B6 mice, loss of GC receptor expression resulted in increased negative selection. Correspondingly, Helios and Nur77 levels were elevated in TCRhiCD4+CD8+ (TCR-signaled) thymocytes. Notably, deletion of Helios fully reversed this negative selection, whereas deletion of Nur77 had no effect on CD4+CD8+ cell numbers but reversed the loss of mature CD4+ thymocytes. Thus, Nur77 and Helios are GC targets that play nonredundant roles in setting the signaling threshold for thymocyte negative selection.


Assuntos
Proteínas de Ligação a DNA/antagonistas & inibidores , Glucocorticoides/farmacologia , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/antagonistas & inibidores , Timócitos/efeitos dos fármacos , Fatores de Transcrição/antagonistas & inibidores , Animais , Proteínas de Ligação a DNA/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/deficiência , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Timócitos/metabolismo , Fatores de Transcrição/metabolismo
2.
J Immunol ; 200(6): 1988-1994, 2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29440508

RESUMO

Glucocorticoid (GC) signaling in thymocytes counters negative selection and promotes the generation of a self-tolerant yet Ag-responsive T cell repertoire. Whereas circulating GC are derived from the adrenals, GC are also synthesized de novo in the thymus. The significance of this local production is unknown. In this study we deleted 11ß-hydroxylase, the enzyme that catalyzes the last step of GC biosynthesis, in thymic epithelial cells (TEC) or thymocytes. Like GC receptor-deficient T cells, T cells from mice lacking TEC-derived but not thymocyte-derived GC proliferated poorly to alloantigen, had a reduced antiviral response, and exhibited enhanced negative selection. Strikingly, basal expression of GC-responsive genes in thymocytes from mice lacking TEC-derived GC was reduced to the same degree as in GC receptor-deficient thymocytes, indicating that at steady-state the majority of biologically active GC are paracrine in origin. These findings demonstrate the importance of extra-adrenal GC even in the presence of circulating adrenal-derived GC.


Assuntos
Antígenos/metabolismo , Células Epiteliais/metabolismo , Glucocorticoides/metabolismo , Timócitos/metabolismo , Animais , Células Cultivadas , Ativação Linfocitária/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Oxigenases de Função Mista/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Glucocorticoides/metabolismo , Linfócitos T/metabolismo
3.
J Biol Chem ; 291(21): 11300-12, 2016 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-27026706

RESUMO

Corticosteroid-binding globulin (CBG) was isolated from chicken serum and identified by mass spectrometry and genomic analysis. This revealed that the organization and synteny of avian and mammalian SerpinA6 genes are conserved. Recombinant zebra finch CBG steroid-binding properties reflect those of the natural protein in plasma and confirm its identity. Zebra finch and rat CBG crystal structures in complex with cortisol resemble each other, but their primary structures share only ∼40% identity, and their steroid-binding site topographies differ in several unexpected ways. Remarkably, a tryptophan that anchors ligands in mammalian CBG steroid-binding sites is replaced by an asparagine. Phylogenetic comparisons show that reptilian CBG orthologs share this unexpected property. Glycosylation of this asparagine in zebra finch CBG does not influence its steroid-binding affinity, but we present evidence that it may participate in protein folding and steroid-binding site formation. Substitutions of amino acids within zebra finch CBG that are conserved only in birds reveal how they contribute to their distinct steroid-binding properties, including their high (nanomolar) affinities for glucocorticoids, progesterone, and androgens. As in mammals, a protease secreted by Pseudomonas aeruginosa cleaves CBG in zebra finch plasma within its reactive center loop and disrupts steroid binding, suggesting an evolutionarily conserved property of CBGs. Measurements of CBG mRNA in zebra finch tissues indicate that liver is the main site of plasma CBG production, and anti-zebra finch CBG antibodies cross-react with CBGs in other birds, extending opportunities to study how CBG regulates the actions of glucocorticoids and sex steroids in these species.


Assuntos
Proteínas Aviárias/sangue , Proteínas Aviárias/genética , Aves/sangue , Aves/genética , Evolução Molecular , Transcortina/genética , Transcortina/metabolismo , Adaptação Fisiológica , Sequência de Aminoácidos , Animais , Proteínas Aviárias/química , Galinhas/sangue , Galinhas/genética , Cristalografia por Raios X , Tentilhões/sangue , Tentilhões/genética , Glicosilação , Modelos Moleculares , Filogenia , Ratos , Homologia de Sequência de Aminoácidos , Pardais/sangue , Pardais/genética , Transcortina/química
4.
Horm Behav ; 88: 4-14, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27818220

RESUMO

Circulating glucocorticoids (GCs) are powerful regulators of immunity. Stress-induced GC secretion by the adrenal glands initially enhances and later suppresses the immune response. GC targets include lymphocytes of the adaptive immune system, which are well known for their sensitivity to GCs. Less appreciated, however, is that GCs are locally produced in lymphoid organs, such as the thymus, where GCs play a critical role in selection of the T cell antigen receptor (TCR) repertoire. Here, we review the roles of systemic and locally-produced GCs in T lymphocyte development, which has been studied primarily in laboratory mice. By antagonizing TCR signaling in developing T cells, thymus-derived GCs promote selection of T cells with stronger TCR signaling. This results in increased T cell-mediated immune responses to a range of antigens. We then compare local and systemic GC patterns in mice to those in several bird species. Taken together, these studies suggest that a combination of adrenal and lymphoid GC production might function to adaptively regulate lymphocyte development and selection, and thus antigen-specific immune reactivity, to optimize survival under different environmental conditions. Future studies should examine how lymphoid GC patterns vary across other vertebrates, how GCs function in B lymphocyte development in the bone marrow, spleen, and the avian bursa of Fabricius, and whether GCs adaptively program immunity in free-living animals.


Assuntos
Glândulas Suprarrenais/metabolismo , Glucocorticoides/metabolismo , Receptores de Glucocorticoides/metabolismo , Linfócitos T/metabolismo , Timo/metabolismo , Animais , Aves/metabolismo , Feminino , Camundongos
5.
Brain Behav Immun ; 57: 271-281, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27165988

RESUMO

Glucocorticoids (GCs) are circulating adrenal steroid hormones that coordinate physiology, especially the counter-regulatory response to stressors. While systemic GCs are often considered immunosuppressive, GCs in the thymus play a critical role in antigen-specific immunity by ensuring the selection of competent T cells. Elevated thymus-specific GC levels are thought to occur by local synthesis, but the mechanism of such tissue-specific GC production remains unknown. Here, we found metyrapone-blockable GC production in neonatal and adult bone marrow, spleen, and thymus of C57BL/6 mice. This production was primarily via regeneration of adrenal metabolites, rather than de novo synthesis from cholesterol, as we found high levels of gene expression and activity of the GC-regenerating enzyme 11ß-hydroxysteroid dehydrogenase type 1 (11ß-HSD1), but not the GC-synthetic enzyme CYP11B1. Furthermore, incubation with physiological concentrations of GC metabolites (11-dehydrocorticosterone, prednisone) induced 11ß-HSD1- and GC receptor-dependent apoptosis (caspase activation) in both T and B cells, showing the functional relevance of local GC regeneration in lymphocyte GC signaling. Local GC production in bone marrow and spleen raises the possibility that GCs play a key role in B cell selection similar to their role in T cell selection. Our results also indicate that local GC production may amplify changes in adrenal GC signaling, rather than buffering against such changes, in the immune system.


Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 1/metabolismo , Apoptose , Medula Óssea/metabolismo , Glucocorticoides/metabolismo , Receptores de Glucocorticoides/metabolismo , Baço/metabolismo , Esteroide 11-beta-Hidroxilase/metabolismo , Timo/metabolismo , Animais , Animais Recém-Nascidos , Células Cultivadas , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL
6.
Eur J Neurosci ; 40(12): 3746-56, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25308904

RESUMO

Heightened motor impulsivity and increased novelty-seeking commonly co-occur in psychiatric disorders, including drug addiction. However, the relationship between these two phenomena remains unclear. One-time tests of novelty sensitivity commonly used in preclinical experiments, such as the open-field or novel-object test, fail to capture the fact that novelty-seekers repeatedly experience novel, stimulating situations. The present study therefore investigated whether repeated exposure to a novel, stimulating environment (SE) altered impulsive action. Male Long-Evans rats were trained to perform the five-choice serial reaction time task (5CSRTT) which measures motor impulsivity in the form of premature responding as well as attention and motivation. Animals were then exposed to a novel SE (1 h/day for 16 days) immediately prior to the 5CSRTT. Significant increases in premature responding were observed in a subgroup of reactive animals termed high responders (HR-SE). These rats were not more impulsive at baseline, and levels of impulsivity normalised once exposure to the SE was discontinued. No other aspect of 5CSRTT performance was affected by the SE challenge. We also determined that HR-SE rats were hyperactive in a novel environment. Biochemical analyses revealed changes in gene and protein expression within the dorsal hippocampus of HR-SE rats, including decreases in mRNA encoding the dopamine D1 receptor and brain-derived neurotrophic factor. These results indicate a novel mechanism by which impulsivity and novelty-reactivity interact that may enhance addiction vulnerability synergistically. Furthermore, studying such context-induced impulsivity may provide insight into the process by which environmental load precipitates psychiatric symptoms in impulse control disorders.


Assuntos
Meio Ambiente , Comportamento Impulsivo/fisiologia , Desempenho Psicomotor/fisiologia , Animais , Atenção/fisiologia , Western Blotting , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Corticosterona/sangue , Hipocampo/fisiologia , Masculino , Motivação/fisiologia , Reação em Cadeia da Polimerase , RNA Mensageiro/metabolismo , Ratos Long-Evans , Receptores de Dopamina D1/metabolismo
7.
Sci Immunol ; 8(86): eabo7975, 2023 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-37595021

RESUMO

Thymic epithelial cells (TECs) produce glucocorticoids, which antagonize negative selection of autoreactive thymocytes and promote a competent T cell antigen-specific repertoire. To characterize their source, we generated a knock-in reporter mouse in which endogenous Cyp11b1, the final enzyme in de novo production of active glucocorticoids, was fluorescently tagged with mScarlet. Here, we find that Cyp11b1 is expressed in medullary TECs (mTECs) but not cortical TECs or other cells in the thymus. A distinct characteristic of mTECs is the presence of Aire, a transcription factor that drives expression of tissue-restricted antigens (TRAs) important for establishing immune tolerance. Cyp11b1 expression was highest in Aire+ mTECs, lower in post-Aire mTECs, and absent in mTECs of Aire-deficient mice. Transcriptomic analyses found that multiple enzymatic biosynthetic pathways are expressed specifically in mTECs and are also Aire dependent. In particular, we found that the thymus expresses messenger RNA for enzymes that catalyze production of many bioactive steroids and that glucocorticoids and sex steroids were secreted by cultured thymi. Expression of the transcripts for these genes and production of their final steroid products were markedly reduced in the absence of Aire. Thus, in addition to its well-established role in inducing TRAs that promote negative selection, Aire has an additional and contrary function of inducing glucocorticoids that antagonize negative selection, which together may expand and enhance the TCR repertoire. Furthermore, because Aire drives expression of multiple enzymes responsible for production of other non-gene-encoded bioactive molecules, it might have yet other roles in thymus development and function.


Assuntos
Glucocorticoides , Esteroide 11-beta-Hidroxilase , Fatores de Transcrição , Animais , Camundongos , Células Epiteliais , Perfilação da Expressão Gênica , Fatores de Transcrição/metabolismo , Timo/metabolismo , Proteína AIRE
8.
J Clin Invest ; 133(18)2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37471141

RESUMO

Glucocorticoids are steroid hormones with potent immunosuppressive properties. Their primary source is the adrenals, where they are generated via de novo synthesis from cholesterol. In addition, many tissues have a recycling pathway in which glucocorticoids are regenerated from inactive metabolites by the enzyme 11ß-hydroxysteroid dehydrogenase type 1 (11ß-HSD1, encoded by Hsd11b1). Here, we find that multiple tumor types express Hsd11b1 and produce active glucocorticoids. Genetic ablation of Hsd11b1 in such cells had no effect on in vitro growth, but reduced in vivo tumor progression, which corresponded with increased frequencies of CD8+ tumor-infiltrating lymphocytes (TILs) expressing activation markers and producing effector cytokines. Tumor-derived glucocorticoids were found to promote signatures of Treg activation and suppress signatures of conventional T cell activation in tumor-infiltrating Tregs. Indeed, CD8+ T cell activation was restored and tumor growth reduced in mice with Treg-specific glucocorticoid receptor deficiency. Importantly, pharmacologic inhibition of 11ß-HSD1 reduced tumor growth to the same degree as gene knockout and rendered immunotherapy-resistant tumors susceptible to PD-1 blockade. Given that HSD11B1 expression is upregulated in many human tumors and that inhibition of 11ß-HSD1 is well tolerated in clinical studies, these data suggest that targeting 11ß-HSD1 may be a beneficial adjunct in cancer therapy.


Assuntos
Glucocorticoides , Neoplasias , Camundongos , Humanos , Animais , Glucocorticoides/farmacologia , Glucocorticoides/metabolismo , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/genética , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/metabolismo , Receptores de Glucocorticoides/genética , Técnicas de Inativação de Genes
9.
Horm Behav ; 62(4): 455-63, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22902893

RESUMO

It is well known that songbirds produce high amplitude songs ("broadcast songs"). Songbirds also produce low amplitude songs ("soft songs") during courtship or territorial aggression in the breeding season. Soft songs are important social signals but have been studied far less than broadcast songs. To date, no studies have examined seasonal changes in soft song or its endocrine regulation. Here, in male song sparrows, we examined soft songs during a simulated territorial intrusion in the breeding season and non-breeding season. We also measured plasma testosterone and dehydroepiandrosterone (DHEA) levels in subjects immediately after the aggressive encounter. The total number of songs produced (broadcast+soft songs) did not vary between seasons. However, there was a dramatic increase in the percentage of soft song in the non-breeding season. Further, the percentage of soft song was negatively correlated with plasma testosterone levels in the non-breeding season. There were seasonal differences in the acoustic structure of two major elements of soft song, trills and buzzes. The minimum frequency of trills was lower in the non-breeding season, and the element repetition rate of buzzes was lower in the non-breeding season. To our knowledge, this is the first study to (1) examine soft songs outside of the breeding season and (2) to identify endocrine correlates of soft songs, which are important social signals in songbirds.


Assuntos
Agressão/fisiologia , Pardais/sangue , Pardais/fisiologia , Vocalização Animal/fisiologia , Agressão/psicologia , Animais , Desidroepiandrosterona/sangue , Hormônios/sangue , Masculino , Reprodução/fisiologia , Estações do Ano , Canto/fisiologia , Aves Canoras/sangue , Aves Canoras/fisiologia , Territorialidade , Testosterona/sangue
10.
Ecotoxicology ; 21(4): 1003-12, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22278365

RESUMO

Changes in animal movement (frequency or speed of locomotion) following exposure to a toxicant are frequently considered a biomarker of contaminant exposure and are some of the most widely reported behavioral results in toxicological literature. However, the ecological consequences of such behavioral changes, such as effects on toxicant transfer in foodwebs, are far less well understood, complicated in part by the short-term nature of laboratory experiments and the lack of complementary field studies where the nature of toxicant exposure is more complex. Here we examine whether naturally exposed individuals of the round goby, a benthic, site-loyal fish, move in a manner similar to conspecifics from less contaminated habitats. In the laboratory, round goby from a relatively cleaner site showed greater activity and exploration than goby from two highly contaminated sites. Male fish were more active than females but the site effects were similar in both sexes. In contrast to laboratory findings, a field mark-recapture study of 881 round goby showed that fish from the cleaner site did not move greater distances or exhibit shorter residence times within the site than round goby from highly contaminated sites. Our results indicate that while behavioral changes in the laboratory may be one of several useful diagnostics of toxicant exposure of wild-exposed animals, they do not necessarily translate readily into measurable differences in a natural context. Thus, the potential fitness consequences of toxicant exposure based on behavioral changes need to be assessed carefully.


Assuntos
Comportamento Animal/efeitos dos fármacos , Ecossistema , Monitoramento Ambiental/métodos , Atividade Motora/efeitos dos fármacos , Perciformes/fisiologia , Animais , Conservação dos Recursos Naturais , Feminino , Masculino , Fatores Sexuais , Poluentes da Água
11.
Front Immunol ; 13: 975858, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36119041

RESUMO

Sex steroid hormones have major effects on the thymus. Age-related increases in androgens and estrogens and pregnancy-induced increases in progestins all cause dramatic thymic atrophy. Atrophy can also be induced by treatment with exogenous sex steroids and reversed by ablation of endogenous sex steroids. Although these observations are frequently touted as evidence of steroid lymphotoxicity, they are often driven by steroid signaling in thymic epithelial cells (TEC), which are highly steroid responsive. Here, we outline the effects of sex steroids on the thymus and T cell development. We focus on studies that have examined steroid signaling in vivo, aiming to emphasize the actions of endogenous steroids which, via TEC, have remarkable programming effects on the TCR repertoire. Due to the dramatic effects of steroids on TEC, especially thymic involution, the direct effects of sex steroid signaling in thymocytes are less well understood. We outline studies that could be important in addressing these possibilities, and highlight suggestive findings of sex steroid generation within the thymus itself.


Assuntos
Androgênios , Timócitos , Atrofia , Epitélio , Estrogênios , Hormônios Esteroides Gonadais , Humanos , Progestinas , Receptores de Antígenos de Linfócitos T
12.
Behav Brain Res ; 433: 114000, 2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-35817135

RESUMO

Social isolation is an established risk factor for mental illness and impaired immune function. Evidence suggests that neuroinflammatory processes contribute to mental illness, possibly via cytokine-induced modulation of neural activity. We examined the effects of lipopolysaccharide (LPS) administration and social home cage environment on cognitive performance in the 5-Choice Serial Reaction Time Task (5CSRTT), and their effects on corticosterone and cytokines in serum and brain tissue. Male Long-Evans rats were reared in pairs or in isolation before training on the 5CSRTT. The effects of saline and LPS (150 µg/kg i.p.) administration on sickness behaviour and task performance were then assessed. LPS-induced sickness behaviour was augmented in socially-isolated rats, translating to increased omissions and slower response times in the 5CSRTT. Both social isolation and LPS administration reduced impulsive responding, while discriminative accuracy remained unaffected. With the exception of reduced impulsivity in isolated rats, these effects were not observed following a second administration of LPS, revealing behavioural tolerance to repeated LPS injections. In a separate cohort of animals, social isolation potentiated the ability of LPS to increase serum corticosterone and IL-6, which corresponded to increased IL-6 in the orbitofrontal and medial prefrontal cortices and the nucleus accumbens. Basal IL-4 levels in the nucleus accumbens were reduced in socially-isolated rats. These findings are consistent with the adaptive response of reduced motivational drive following immune challenge, and identify social isolation as an exacerbating factor. Enhanced IL-6 signalling may play a role in mediating the potentiated behavioural response to LPS administration in isolated animals.


Assuntos
Corticosterona , Lipopolissacarídeos , Animais , Cognição/fisiologia , Citocinas , Humanos , Interleucina-6 , Lipopolissacarídeos/farmacologia , Masculino , Ratos , Ratos Long-Evans
13.
Am J Physiol Endocrinol Metab ; 301(1): E11-24, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21540450

RESUMO

Glucocorticoids and mineralocorticoids are steroid hormones classically thought to be secreted exclusively by the adrenal glands. However, recent evidence has shown that corticosteroids can also be locally synthesized in various other tissues, including primary lymphoid organs, intestine, skin, brain, and possibly heart. Evidence for local synthesis includes detection of steroidogenic enzymes and high local corticosteroid levels, even after adrenalectomy. Local synthesis creates high corticosteroid concentrations in extra-adrenal organs, sometimes much higher than circulating concentrations. Interestingly, local corticosteroid synthesis can be regulated via locally expressed mediators of the hypothalamic-pituitary-adrenal (HPA) axis or renin-angiotensin system (RAS). In some tissues (e.g., skin), these local control pathways might form miniature analogs of the pathways that regulate adrenal corticosteroid production. Locally synthesized glucocorticoids regulate activation of immune cells, while locally synthesized mineralocorticoids regulate blood volume and pressure. The physiological importance of extra-adrenal glucocorticoids and mineralocorticoids has been shown, because inhibition of local synthesis has major effects even in adrenal-intact subjects. In sum, while adrenal secretion of glucocorticoids and mineralocorticoids into the blood coordinates multiple organ systems, local synthesis of corticosteroids results in high spatial specificity of steroid action. Taken together, studies of these five major organ systems challenge the conventional understanding of corticosteroid biosynthesis and function.


Assuntos
Glucocorticoides/metabolismo , Glucocorticoides/fisiologia , Mineralocorticoides/metabolismo , Mineralocorticoides/fisiologia , Glândulas Suprarrenais/metabolismo , Glândulas Suprarrenais/fisiologia , Animais , Retroalimentação Fisiológica/fisiologia , Glucocorticoides/biossíntese , Humanos , Tecido Linfoide/metabolismo , Tecido Linfoide/fisiologia , Redes e Vias Metabólicas/fisiologia , Mineralocorticoides/biossíntese , Modelos Biológicos , Distribuição Tecidual
14.
Nat Rev Immunol ; 21(4): 233-243, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33149283

RESUMO

Glucocorticoids (GCs) are small lipid hormones produced by the adrenals that maintain organismal homeostasis. Circadian and stress-induced changes in systemic GC levels regulate metabolism, cardiovascular and neural function, reproduction and immune activity. Our understanding of GC effects on immunity comes largely from administration of exogenous GCs to treat immune or inflammatory disorders. However, it is increasingly clear that endogenous GCs both promote and suppress T cell immunity. Examples include selecting an appropriate repertoire of T cell receptor (TCR) self-affinities in the thymus, regulating T cell trafficking between anatomical compartments, suppressing type 1 T helper (TH1) cell responses while permitting TH2 cell and, especially, IL-17-producing T helper cell responses, and promoting memory T cell differentiation and maintenance. Furthermore, in addition to functioning at a distance, extra-adrenal (local) production allows GCs to act as paracrine signals, specifically targeting activated T cells in various contexts in the thymus, mucosa and tumours. These pleiotropic effects on different T cell populations during development and immune responses provide a nuanced understanding of how GCs shape immunity.


Assuntos
Glucocorticoides/imunologia , Linfopoese/imunologia , Receptores de Glucocorticoides/imunologia , Linfócitos T/imunologia , Diferenciação Celular/imunologia , Linhagem da Célula , Rearranjo Gênico do Linfócito T/genética , Rearranjo Gênico do Linfócito T/imunologia , Humanos , Tolerância Imunológica/imunologia , Inflamação/imunologia , Receptores de Antígenos de Linfócitos T/genética , Linfócitos T Auxiliares-Indutores/imunologia , Timo
15.
Nucl Recept Signal ; 17: 1550762919899643, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-35582456

RESUMO

Hormone-activated nuclear receptors (NRs) control myriad cellular processes. The classical paradigm for hormone delivery is secretion from endocrine organs and blood-borne distribution to responding cells. However, many hormones can also be synthesized in the same tissues in which responding cells are found (paracrine signaling). In both endocrine and paracrine signaling, numerous factors affect hormone availability to target cell NRs, including hormone access to and sequestration by carrier proteins, transport across cell membranes, metabolism, and receptor availability. These factors can differ dramatically during development, between anatomical locations, and across cell types, and may cause highly variable responses to the same hormone signal. This has been difficult to study because current approaches are unable to quantify cell-intrinsic exposure to NR hormone ligands, precluding assessment of cell-specific hormone access and signaling. We have used the ligand-dependent interaction of the endogenous glucocorticoid (GC) receptor with chromatin as a biosensor that quantifies systemic access of GCs to cells within tissues at the single cell level, showing that tissues are buffered against circulating GCs. This approach also showed highly targeted paracrine GC signaling within the thymus, where GCs promote the positive selection of thymocytes with moderate affinity for self-antigens and the development of a safe and effective T-cell repertoire. We believe that this and complementary biosensor approaches will be useful to identify endocrine and paracrine target cells in situ and quantify their exposure to hormones regardless of the mode of delivery.

16.
Gen Comp Endocrinol ; 161(2): 202-7, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19174165

RESUMO

In most vertebrates, aggression and dominance are tightly linked to circulating testosterone. Fish, however, have two androgens (testosterone, T and 11-ketotestosterone, 11KT) that influence aggression and dominance. To date, few studies have compared the relationship between androgen levels and the outcome of aggressive contests in both females and males of the same species. To investigate sex differences in androgens we staged size-matched, limited-resource (territory) contests with 14 female-female and 10 male-male pairs of the highly social cichlid Neolamprologus pulcher. We then examined androgen levels in recently established dominants, who won the contest and subsequently acquired a territory (for 3h), and subordinates, who lost and did not acquire a territory. Newly dominant females had higher plasma T but similar 11KT levels to newly subordinate females. In contrast, newly dominant males had higher 11KT but similar T levels to subordinate males. The ratio of 11KT to T, which demonstrates physiological importance of T conversion to 11KT, was positively correlated with submissive behavior in female winners, and correlated weakly with aggressive behavior in male winners (p=0.05). These findings provide support for the hypothesis that different androgens play equivalent roles in female versus male dominance establishment, and suggest that relative levels of 11KT and T are implicated in female dominance behavior and perhaps behavior of both sexes.


Assuntos
Androgênios/sangue , Ciclídeos/sangue , Ciclídeos/fisiologia , Dominação-Subordinação , Territorialidade , Animais , Feminino , Masculino , Radioimunoensaio , Caracteres Sexuais , Testosterona/análogos & derivados , Testosterona/sangue
17.
Cell Rep ; 26(13): 3629-3642.e4, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30917317

RESUMO

Glucocorticoids are lipid-soluble hormones that signal via the glucocorticoid receptor (GR), a ligand-dependent transcription factor. Circulating glucocorticoids derive from the adrenals, but it is now apparent that paracrine glucocorticoid signaling occurs in multiple tissues. Effective local glucocorticoid concentrations and whether glucocorticoid delivery can be targeted to specific cell subsets are unknown. We use fluorescence detection of chromatin-associated GRs as biosensors of ligand binding and observe signals corresponding to steroid concentrations over physiological ranges in vitro and in vivo. In the thymus, where thymic epithelial cell (TEC)-synthesized glucocorticoids antagonize negative selection, we find that CD4+CD8+TCRhi cells, a small subset responding to self-antigens and undergoing selection, are specific targets of TEC-derived glucocorticoids and are exposed to 3-fold higher levels than other cells. These results demonstrate and quantitate targeted delivery of paracrine glucocorticoids. This approach may be used to assess in situ nuclear receptor signaling in a variety of physiological and pathological contexts.


Assuntos
Glucocorticoides/metabolismo , Timo/metabolismo , Animais , Técnicas Biossensoriais , Linhagem Celular , Cromatina/metabolismo , Sistemas de Liberação de Medicamentos , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais , Análise de Célula Única , Timo/citologia
19.
Sci Rep ; 7(1): 698, 2017 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-28386080

RESUMO

Rheumatoid arthritis (RA) is a chronic inflammatory condition with variable clinical presentation and disease progression. Importantly, animal models of RA are widely used to examine disease pathophysiology/treatments. Here, we exploited known vendor colony-based differences in endocrine/immune responses to gain insight into inflammatory modulators in arthritis, utilizing the adjuvant-induced arthritis (AA) model. Our previous study found that Sprague-Dawley (SD) rats from Harlan develop more severe AA, have lower corticosteroid binding globulin, and have different patterns of cytokine activation in the hind paw, compared to SD rats from Charles River. Here, we extend these findings, demonstrating that Harlan rats show reduced hypothalamic cytokine responses to AA, compared to Charles River rats, and identify colony-based differences in cytokine profiles in hippocampus and spleen. To go beyond individual measures, probing for networks of variables underlying differential responses, we combined datasets from this and the previous study and performed constrained principal component analysis (CPCA). CPCA revealed that with AA, Charles River rats show activation of chemokine and central cytokine networks, whereas Harlan rats activate peripheral immune/hypothalamic-pituitary-adrenal networks. These data suggest differential underlying disease mechanism(s), highlighting the power of evaluating multiple disease biomarkers, with potential implications for understanding differential disease profiles in individuals with RA.


Assuntos
Artrite Reumatoide/etiologia , Artrite Reumatoide/metabolismo , Sistema Endócrino/imunologia , Sistema Endócrino/metabolismo , Sistema Imunitário/imunologia , Sistema Imunitário/metabolismo , Animais , Artrite Experimental , Artrite Reumatoide/patologia , Biomarcadores , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Hormônios/metabolismo , Especificidade de Hospedeiro , Mediadores da Inflamação/metabolismo , Masculino , Especificidade de Órgãos , Ratos
20.
J Leukoc Biol ; 101(4): 893-900, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28034915

RESUMO

The incidence of inflammatory bowel diseases (IBDs) has steadily increased in recent decades-a phenomenon that cannot be explained by genetic mutations alone. Other factors, including the composition of the intestinal microbiome, are potentially important contributors to the increased occurrence of this group of diseases. Previous reports have shown a correlation between early-life antibiotic (Abx) treatment and an increased incidence of IBD. In this report, we investigated the effects of early-life Abx treatments on the pathogenicity of CD4+ T cells using an experimental T cell transfer model of IBD. Our results show that CD4+ T cells isolated from adult mice that had been treated with Abx during gestation and in early life induced a faster onset of IBD in Rag1-deficient mice compared with CD4+ T cells of untreated mice. Ex vivo functional analyses of IBD-inducing CD4+ T cells did not show significant differences in their immunologic potential ex vivo, despite their in vivo phenotype. However, genome-wide gene-expression analysis revealed that these cells displayed dysregulated expression of genes associated with cell-cycle regulation, metabolism, and cellular stress. Analysis of Abx-treated CD4+ T cell donors showed systemically elevated levels of the stress hormone corticosterone throughout life compared with untreated donors. The cohousing of Abx-treated mice with untreated mice decreased serum corticosterone, and a consequent transfer of the cells from cohoused mice into Rag1-deficient mice restored the onset and severity of disease to that of untreated animals. Thus, our results suggest that early-life Abx treatment results in a stress response with high levels of corticosterone that influences CD4+ T cell function.


Assuntos
Antibacterianos/farmacologia , Linfócitos T CD4-Positivos/imunologia , Inflamação/imunologia , Inflamação/patologia , Mucosa Intestinal/patologia , Animais , Antibacterianos/uso terapêutico , Linfócitos T CD4-Positivos/efeitos dos fármacos , Corticosterona/sangue , Citocinas/genética , Citocinas/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Genoma , Abrigo para Animais , Inflamação/sangue , Doenças Inflamatórias Intestinais/sangue , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/imunologia , Mucosa Intestinal/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Receptores de Antígenos de Linfócitos T/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA