Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Adv Exp Med Biol ; 1433: 139-165, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37751139

RESUMO

Histone lysine methylation is a major epigenetic modification that participates in several cellular processes including gene regulation and chromatin structure. This mark can go awry in disease contexts such as cancer. Two decades ago, the discovery of histone demethylase enzymes thirteen years ago sheds light on the complexity of the regulation of this mark. Here we address the roles of lysine demethylases JMJD3 and UTX in physiological and disease contexts. The two demethylases play pivotal roles in many developmental and disease contexts via regulation of di- and trimethylation of lysine 27 on histone H3 (H3K27me2/3) in repressing gene expression programs. JMJD3 and UTX participate in several biochemical settings including methyltransferase and chromatin remodeling complexes. They have histone demethylase-dependent and -independent activities and a variety of context-specific interacting factors. The structure, amounts, and function of the demethylases can be altered in disease due to genetic alterations or aberrant gene regulation. Therefore, academic and industrial initiatives have targeted these enzymes using a number of small molecule compounds in therapeutic approaches. In this chapter, we will touch upon inhibitor formulations, their properties, and current efforts to test them in preclinical contexts to optimize their therapeutic outcomes. Demethylase inhibitors are currently used in targeted therapeutic approaches that might be particularly effective when used in conjunction with systemic approaches such as chemotherapy.


Assuntos
Epigênese Genética , Lisina , Epigenômica , Histona Desmetilases/genética , Histonas/genética
2.
Am J Pathol ; 186(9): 2462-72, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27423697

RESUMO

Hodgkin lymphoma (HL) is a malignancy of germinal center (GC) B-cell origin. To explore the role of long noncoding RNAs (lncRNAs) in HL, we studied lncRNA expression patterns in normal B-cell subsets, HL cell lines, and tissues. Naive and memory B cells showed a highly similar lncRNA expression pattern, distinct from GC-B cells. Significant differential expression between HL and normal GC-B cells was observed for 475 lncRNA loci. For two validated lncRNAs, an enhanced expression was observed in HL, diffuse large B-cell lymphoma, and lymphoblastoid cell lines. For a third lncRNA, increased expression levels were observed in HL and part of Burkitt lymphoma cell lines. RNA fluorescence in situ hybridization on primary HL tissues revealed a tumor cell-specific expression pattern for all three lncRNAs. A potential cis-regulatory role was observed for 107 differentially expressed lncRNA-mRNA pairs localizing within a 60-kb region. Consistent with a cis-acting role, we showed a preferential nuclear localization for two selected candidates. Thus, we showed dynamic lncRNA expression changes during the transit of normal B cells through the GC reaction and widely deregulated lncRNA expression patterns in HL. Three lncRNAs showed a tumor cell-specific expression pattern in HL tissues and might therefore be of value as a biomarker.


Assuntos
Subpopulações de Linfócitos B/metabolismo , Doença de Hodgkin/genética , RNA Longo não Codificante/biossíntese , Células de Reed-Sternberg/metabolismo , Transcriptoma , Adulto , Subpopulações de Linfócitos B/patologia , Biomarcadores Tumorais/genética , Feminino , Perfilação da Expressão Gênica , Doença de Hodgkin/metabolismo , Doença de Hodgkin/patologia , Humanos , Imuno-Histoquímica , Hibridização in Situ Fluorescente , Masculino , Reação em Cadeia da Polimerase , RNA Longo não Codificante/análise , Células de Reed-Sternberg/patologia , Adulto Jovem
3.
Sci Adv ; 9(6): eadf0597, 2023 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-36763664

RESUMO

MicroRNA (miRNA) homeostasis is crucial for the posttranscriptional regulation of their target genes during development and in disease states. miRNAs are derived from primary transcripts and are processed from a hairpin precursor intermediary to a mature 22-nucleotide duplex RNA. Loading of the duplex into the Argonaute (AGO) protein family is pivotal to miRNA abundance and its posttranscriptional function. The Integrator complex plays a key role in protein coding and noncoding RNA maturation, RNA polymerase II pause-release, and premature transcriptional termination. Here, we report that loss of Integrator results in global destabilization of mature miRNAs. Enhanced ultraviolet cross-linking and immunoprecipitation of Integrator uncovered an association with duplex miRNAs before their loading onto AGOs. Tracing miRNA fate from biogenesis to stabilization by incorporating 4-thiouridine in nascent transcripts pinpointed a critical role for Integrator in miRNA assembly into AGOs.


Assuntos
MicroRNAs , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Regulação da Expressão Gênica , Núcleo Celular/metabolismo
4.
Sci Adv ; 7(45): eabe3393, 2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34730992

RESUMO

Integrator regulates the 3'-end processing and termination of multiple classes of noncoding RNAs. Depletion of INTS11, the catalytic subunit of Integrator, or ectopic expression of its catalytic dead enzyme impairs the 3'-end processing and termination of a set of protein-coding transcripts termed Integrator-regulated termination (IRT) genes. This defect is manifested by increased RNA polymerase II (RNAPII) readthrough and occupancy of serine-2 phosphorylated RNAPII, de novo trimethylation of lysine-36 on histone H3, and a compensatory elevation of the cleavage and polyadenylation (CPA) complex beyond the canonical polyadenylation sites. 3' RNA sequencing reveals that proximal polyadenylation site usage relies on the endonuclease activity of INTS11. The DNA sequence encompassing the transcription end sites of IRT genes features downstream polyadenylation motifs and an enrichment of GC content that permits the formation of secondary structures within the 3'UTR. Together, this study identifies a subset of protein-coding transcripts whose 3' end processing requires the Integrator complex.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA