Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 12(9): 4564-9, 2012 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-22888989

RESUMO

We study 23-30 nm long suspended single-wall carbon nanotube quantum dots and observe both their stretching and bending vibrational modes. We use low-temperature DC electron transport to excite and measure the tubes' bending mode by making use of a positive feedback mechanism between their vibrations and the tunneling electrons. In these nanoelectromechanical systems (NEMS), we measure fundamental bending frequencies f(bend) ≈ 75-280 GHz and extract quality factors Q ∼ 10(6). The NEMS's frequencies can be tuned by a factor of 2 with tension induced by mechanical breakjunctions actuated by an electrostatic force or tension from bent suspended electrodes.


Assuntos
Cristalização/métodos , Sistemas Microeletromecânicos/instrumentação , Microeletrodos , Nanotecnologia/instrumentação , Nanotubos de Carbono/química , Nanotubos de Carbono/ultraestrutura , Desenho de Equipamento , Análise de Falha de Equipamento , Micro-Ondas , Tamanho da Partícula
2.
Nat Commun ; 8: 15491, 2017 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-28561024

RESUMO

Making use of bipolar transport in single-wall carbon nanotube quantum transistors would permit a single device to operate as both a quantum dot and a ballistic conductor or as two quantum dots with different charging energies. Here we report ultra-clean 10 to 100 nm scale suspended nanotube transistors with a large electron-hole transport asymmetry. The devices consist of naked nanotube channels contacted with sections of tube under annealed gold. The annealed gold acts as an n-doping top gate, allowing coherent quantum transport, and can create nanometre-sharp barriers. These tunnel barriers define a single quantum dot whose charging energies to add an electron or a hole are vastly different (e-h charging energy asymmetry). We parameterize the e-h transport asymmetry by the ratio of the hole and electron charging energies ηe-h. This asymmetry is maximized for short channels and small band gap tubes. In a small band gap device, we demonstrate the fabrication of a dual functionality quantum device acting as a quantum dot for holes and a much longer quantum bus for electrons. In a 14 nm-long channel, ηe-h reaches up to 2.6 for a device with a band gap of 270 meV. The charging energies in this device exceed 100 meV.

3.
Nat Commun ; 6: 7702, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26151889

RESUMO

Black phosphorus (bP) is the second known elemental allotrope with a layered crystal structure that can be mechanically exfoliated to atomic layer thickness. Unlike metallic graphite and semi-metallic graphene, bP is a semiconductor in both bulk and few-layer form. Here we fabricate bP-naked quantum wells in a back-gated field effect transistor geometry with bP thicknesses ranging from 6±1 nm to 47±1 nm. Using a polymer encapsulant, we suppress bP oxidation and observe field effect mobilities up to 900 cm(2) V(-1) s(-1) and on/off current ratios exceeding 10(5). Shubnikov-de Haas oscillations observed in magnetic fields up to 35 T reveal a 2D hole gas with Schrödinger fermion character in a surface accumulation layer. Our work demonstrates that 2D electronic structure and 2D atomic structure are independent. 2D carrier confinement can be achieved without approaching atomic layer thickness, advantageous for materials that become increasingly reactive in the few-layer limit such as bP.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA