Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.812
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 23(5): 692-704, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35484407

RESUMO

The NLRP3 inflammasome is linked to sterile and pathogen-dependent inflammation, and its dysregulation underlies many chronic diseases. Mitochondria have been implicated as regulators of the NLRP3 inflammasome through several mechanisms including generation of mitochondrial reactive oxygen species (ROS). Here, we report that mitochondrial electron transport chain (ETC) complex I, II, III and V inhibitors all prevent NLRP3 inflammasome activation. Ectopic expression of Saccharomyces cerevisiae NADH dehydrogenase (NDI1) or Ciona intestinalis alternative oxidase, which can complement the functional loss of mitochondrial complex I or III, respectively, without generation of ROS, rescued NLRP3 inflammasome activation in the absence of endogenous mitochondrial complex I or complex III function. Metabolomics revealed phosphocreatine (PCr), which can sustain ATP levels, as a common metabolite that is diminished by mitochondrial ETC inhibitors. PCr depletion decreased ATP levels and NLRP3 inflammasome activation. Thus, the mitochondrial ETC sustains NLRP3 inflammasome activation through PCr-dependent generation of ATP, but via a ROS-independent mechanism.


Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Trifosfato de Adenosina/metabolismo , Transporte de Elétrons , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Espécies Reativas de Oxigênio/metabolismo
2.
Cell ; 175(4): 921-933.e14, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30388452

RESUMO

Contact-dependent growth inhibition (CDI) entails receptor-mediated delivery of CdiA-derived toxins into Gram-negative target bacteria. Using electron cryotomography, we show that each CdiA effector protein forms a filament extending ∼33 nm from the cell surface. Remarkably, the extracellular filament represents only the N-terminal half of the effector. A programmed secretion arrest sequesters the C-terminal half of CdiA, including the toxin domain, in the periplasm prior to target-cell recognition. Upon binding receptor, CdiA secretion resumes, and the periplasmic FHA-2 domain is transferred to the target-cell outer membrane. The C-terminal toxin region of CdiA then penetrates into the target-cell periplasm, where it is cleaved for subsequent translocation into the cytoplasm. Our findings suggest that the FHA-2 domain assembles into a transmembrane conduit for toxin transport into the periplasm of target bacteria. We propose that receptor-triggered secretion ensures that FHA-2 export is closely coordinated with integration into the target-cell outer membrane. VIDEO ABSTRACT.


Assuntos
Antibiose , Proteínas de Escherichia coli/metabolismo , Proteínas de Membrana/metabolismo , Sistemas de Secreção Tipo V/metabolismo , Extensões da Superfície Celular/metabolismo , Extensões da Superfície Celular/ultraestrutura , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Membrana/química , Domínios Proteicos , Receptores de Superfície Celular/metabolismo
3.
Mol Cell ; 84(6): 1101-1119.e9, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38428433

RESUMO

Mitochondrial outer membrane ⍺-helical proteins play critical roles in mitochondrial-cytoplasmic communication, but the rules governing the targeting and insertion of these biophysically diverse proteins remain unknown. Here, we first defined the complement of required mammalian biogenesis machinery through genome-wide CRISPRi screens using topologically distinct membrane proteins. Systematic analysis of nine identified factors across 21 diverse ⍺-helical substrates reveals that these components are organized into distinct targeting pathways that act on substrates based on their topology. NAC is required for the efficient targeting of polytopic proteins, whereas signal-anchored proteins require TTC1, a cytosolic chaperone that physically engages substrates. Biochemical and mutational studies reveal that TTC1 employs a conserved TPR domain and a hydrophobic groove in its C-terminal domain to support substrate solubilization and insertion into mitochondria. Thus, the targeting of diverse mitochondrial membrane proteins is achieved through topological triaging in the cytosol using principles with similarities to ER membrane protein biogenesis systems.


Assuntos
Membranas Mitocondriais , Proteínas de Saccharomyces cerevisiae , Animais , Membranas Mitocondriais/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Mutação , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Transporte Proteico , Proteínas de Saccharomyces cerevisiae/metabolismo , Mamíferos/metabolismo
4.
Mol Cell ; 83(6): 1012-1012.e1, 2023 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-36931250

RESUMO

Mitochondria have emerged as signaling organelles with roles beyond their well-established function in generating ATP and metabolites for macromolecule synthesis. Healthy mitochondria integrate various physiologic inputs and communicate signals that control cell function or fate as well as adaptation to stress. Dysregulation of these mitochondrial signaling networks are linked to pathology. Here we outline a few modes of signaling between the mitochondrion and the cytoplasm. To view this SnapShot, open or download the PDF.


Assuntos
Mitocôndrias , Transdução de Sinais , Mitocôndrias/metabolismo , Citoplasma/metabolismo , Organelas/metabolismo , Aclimatação
5.
Nature ; 622(7984): 707-711, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37579792

RESUMO

During the first 500 million years of cosmic history, the first stars and galaxies formed, seeding the Universe with heavy elements and eventually reionizing the intergalactic medium1-3. Observations with the James Webb Space Telescope (JWST) have uncovered a surprisingly high abundance of candidates for early star-forming galaxies, with distances (redshifts, z), estimated from multiband photometry, as large as z ≈ 16, far beyond pre-JWST limits4-9. Although such photometric redshifts are generally robust, they can suffer from degeneracies and occasionally catastrophic errors. Spectroscopic measurements are required to validate these sources and to reliably quantify physical properties that can constrain galaxy formation models and cosmology10. Here we present JWST spectroscopy that confirms redshifts for two very luminous galaxies with z > 11, and also demonstrates that another candidate with suggested z ≈ 16 instead has z = 4.9, with an unusual combination of nebular line emission and dust reddening that mimics the colours expected for much more distant objects. These results reinforce evidence for the early, rapid formation of remarkably luminous galaxies while also highlighting the necessity of spectroscopic verification. The large abundance of bright, early galaxies may indicate shortcomings in current galaxy formation models or deviations from physical properties (such as the stellar initial mass function) that are generally believed to hold at later times.

6.
Nature ; 618(7966): 708-711, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37277615

RESUMO

Dust grains absorb half of the radiation emitted by stars throughout the history of the universe, re-emitting this energy at infrared wavelengths1-3. Polycyclic aromatic hydrocarbons (PAHs) are large organic molecules that trace millimetre-size dust grains and regulate the cooling of interstellar gas within galaxies4,5. Observations of PAH features in very distant galaxies have been difficult owing to the limited sensitivity and wavelength coverage of previous infrared telescopes6,7. Here we present James Webb Space Telescope observations that detect the 3.3 µm PAH feature in a galaxy observed less than 1.5 billion years after the Big Bang. The high equivalent width of the PAH feature indicates that star formation, rather than black hole accretion, dominates infrared emission throughout the galaxy. The light from PAH molecules, hot dust and large dust grains and stars are spatially distinct from one another, leading to order-of-magnitude variations in PAH equivalent width and ratio of PAH to total infrared luminosity across the galaxy. The spatial variations we observe suggest either a physical offset between PAHs and large dust grains or wide variations in the local ultraviolet radiation field. Our observations demonstrate that differences in emission from PAH molecules and large dust grains are a complex result of localized processes within early galaxies.

7.
Nature ; 602(7896): 321-327, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34937051

RESUMO

It is not fully understood why COVID-19 is typically milder in children1-3. Here, to examine the differences between children and adults in their response to SARS-CoV-2 infection, we analysed paediatric and adult patients with COVID-19 as well as healthy control individuals (total n = 93) using single-cell multi-omic profiling of matched nasal, tracheal, bronchial and blood samples. In the airways of healthy paediatric individuals, we observed cells that were already in an interferon-activated state, which after SARS-CoV-2 infection was further induced especially in airway immune cells. We postulate that higher paediatric innate interferon responses restrict viral replication and disease progression. The systemic response in children was characterized by increases in naive lymphocytes and a depletion of natural killer cells, whereas, in adults, cytotoxic T cells and interferon-stimulated subpopulations were significantly increased. We provide evidence that dendritic cells initiate interferon signalling in early infection, and identify epithelial cell states associated with COVID-19 and age. Our matching nasal and blood data show a strong interferon response in the airways with the induction of systemic interferon-stimulated populations, which were substantially reduced in paediatric patients. Together, we provide several mechanisms that explain the milder clinical syndrome observed in children.


Assuntos
COVID-19/sangue , COVID-19/imunologia , Células Dendríticas/imunologia , Interferons/imunologia , Células Matadoras Naturais/imunologia , SARS-CoV-2/imunologia , Linfócitos T Citotóxicos/imunologia , Adulto , Brônquios/imunologia , Brônquios/virologia , COVID-19/patologia , Chicago , Estudos de Coortes , Progressão da Doença , Células Epiteliais/citologia , Células Epiteliais/imunologia , Células Epiteliais/virologia , Feminino , Humanos , Imunidade Inata , Londres , Masculino , Mucosa Nasal/imunologia , Mucosa Nasal/virologia , SARS-CoV-2/crescimento & desenvolvimento , Análise de Célula Única , Traqueia/virologia , Adulto Jovem
8.
Proc Natl Acad Sci U S A ; 121(25): e2313093121, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38814875

RESUMO

While rhythm can facilitate and enhance many aspects of behavior, its evolutionary trajectory in vocal communication systems remains enigmatic. We can trace evolutionary processes by investigating rhythmic abilities in different species, but research to date has largely focused on songbirds and primates. We present evidence that cetaceans-whales, dolphins, and porpoises-are a missing piece of the puzzle for understanding why rhythm evolved in vocal communication systems. Cetaceans not only produce rhythmic vocalizations but also exhibit behaviors known or thought to play a role in the evolution of different features of rhythm. These behaviors include vocal learning abilities, advanced breathing control, sexually selected vocal displays, prolonged mother-infant bonds, and behavioral synchronization. The untapped comparative potential of cetaceans is further enhanced by high interspecific diversity, which generates natural ranges of vocal and social complexity for investigating various evolutionary hypotheses. We show that rhythm (particularly isochronous rhythm, when sounds are equally spaced in time) is prevalent in cetacean vocalizations but is used in different contexts by baleen and toothed whales. We also highlight key questions and research areas that will enhance understanding of vocal rhythms across taxa. By coupling an infraorder-level taxonomic assessment of vocal rhythm production with comparisons to other species, we illustrate how broadly comparative research can contribute to a more nuanced understanding of the prevalence, evolution, and possible functions of rhythm in animal communication.


Assuntos
Cetáceos , Vocalização Animal , Animais , Vocalização Animal/fisiologia , Cetáceos/fisiologia , Evolução Biológica , Periodicidade
9.
Proc Natl Acad Sci U S A ; 121(14): e2318528121, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38536752

RESUMO

Human working memory is a key cognitive process that engages multiple functional anatomical nodes across the brain. Despite a plethora of correlative neuroimaging evidence regarding the working memory architecture, our understanding of critical hubs causally controlling overall performance is incomplete. Causal interpretation requires cognitive testing following safe, temporal, and controllable neuromodulation of specific functional anatomical nodes. Such experiments became available in healthy humans with the advance of transcranial alternating current stimulation (tACS). Here, we synthesize findings of 28 placebo-controlled studies (in total, 1,057 participants) that applied frequency-specific noninvasive stimulation of neural oscillations and examined working memory performance in neurotypical adults. We use a computational meta-modeling method to simulate each intervention in realistic virtual brains and test reported behavioral outcomes against the stimulation-induced electric fields in different brain nodes. Our results show that stimulating anterior frontal and medial temporal theta oscillations and occipitoparietal gamma rhythms leads to significant dose-dependent improvement in working memory task performance. Conversely, prefrontal gamma modulation is detrimental to performance. Moreover, we found distinct spatial expression of theta subbands, where working memory changes followed orbitofrontal high-theta modulation and medial temporal low-theta modulation. Finally, all these results are driven by changes in working memory accuracy rather than processing time measures. These findings provide a fresh view of the working memory mechanisms, complementary to neuroimaging research, and propose hypothesis-driven targets for the clinical treatment of working memory deficits.


Assuntos
Memória de Curto Prazo , Estimulação Transcraniana por Corrente Contínua , Adulto , Humanos , Memória de Curto Prazo/fisiologia , Ritmo Gama/fisiologia , Encéfalo , Cognição/fisiologia , Transtornos da Memória , Estimulação Transcraniana por Corrente Contínua/métodos
10.
Proc Natl Acad Sci U S A ; 121(20): e2400689121, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38717858

RESUMO

Social reputations facilitate cooperation: those who help others gain a good reputation, making them more likely to receive help themselves. But when people hold private views of one another, this cycle of indirect reciprocity breaks down, as disagreements lead to the perception of unjustified behavior that ultimately undermines cooperation. Theoretical studies often assume population-wide agreement about reputations, invoking rapid gossip as an endogenous mechanism for reaching consensus. However, the theory of indirect reciprocity lacks a mechanistic description of how gossip actually generates consensus. Here, we develop a mechanistic model of gossip-based indirect reciprocity that incorporates two alternative forms of gossip: exchanging information with randomly selected peers or consulting a single gossip source. We show that these two forms of gossip are mathematically equivalent under an appropriate transformation of parameters. We derive an analytical expression for the minimum amount of gossip required to reach sufficient consensus and stabilize cooperation. We analyze how the amount of gossip necessary for cooperation depends on the benefits and costs of cooperation, the assessment rule (social norm), and errors in reputation assessment, strategy execution, and gossip transmission. Finally, we show that biased gossip can either facilitate or hinder cooperation, depending on the direction and magnitude of the bias. Our results contribute to the growing literature on cooperation facilitated by communication, and they highlight the need to study strategic interactions coupled with the spread of social information.


Assuntos
Comportamento Cooperativo , Humanos , Comunicação , Relações Interpessoais , Modelos Teóricos
11.
Proc Natl Acad Sci U S A ; 121(13): e2305030121, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38517975

RESUMO

During wildfires and fossil fuel combustion, biomass is converted to black carbon (BC) via incomplete combustion. BC enters the ocean by rivers and atmospheric deposition contributing to the marine dissolved organic carbon (DOC) pool. The fate of BC is considered to reside in the marine DOC pool, where the oldest BC 14C ages have been measured (>20,000 14C y), implying long-term storage. DOC is the largest exchangeable pool of organic carbon in the oceans, yet most DOC (>80%) remains molecularly uncharacterized. Here, we report 14C measurements on size-fractionated dissolved BC (DBC) obtained using benzene polycarboxylic acids as molecular tracers to constrain the sources and cycling of DBC and its contributions to refractory DOC (RDOC) in a site in the North Pacific Ocean. Our results reveal that the cycling of DBC is more dynamic and heterogeneous than previously believed though it does not comprise a single, uniformly "old" 14C age. Instead, both semilabile and refractory DBC components are distributed among size fractions of DOC. We report that DBC cycles within DOC as a component of RDOC, exhibiting turnover in the ocean on millennia timescales. DBC within the low-molecular-weight DOC pool is large, environmentally persistent and constitutes the size fraction that is responsible for long-term DBC storage. We speculate that sea surface processes, including bacterial remineralization (via the coupling of photooxidation of surface DBC and bacterial co-metabolism), sorption onto sinking particles and surface photochemical oxidation, modify DBC composition and turnover, ultimately controlling the fate of DBC and RDOC in the ocean.

12.
Development ; 150(14)2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37350382

RESUMO

Retinoic acid (RA) is the proposed mammalian 'meiosis inducing substance'. However, evidence for this role comes from studies in the fetal ovary, where germ cell differentiation and meiotic initiation are temporally inseparable. In the postnatal testis, these events are separated by more than 1 week. Exploiting this difference, we discovered that, although RA is required for spermatogonial differentiation, it is dispensable for the subsequent initiation, progression and completion of meiosis. Indeed, in the absence of RA, the meiotic transcriptome program in both differentiating spermatogonia and spermatocytes entering meiosis was largely unaffected. Instead, transcripts encoding factors required during spermiogenesis were aberrant during preleptonema, and the subsequent spermatid morphogenesis program was disrupted such that no sperm were produced. Taken together, these data reveal a RA-independent model for male meiotic initiation.


Assuntos
Testículo , Tretinoína , Animais , Feminino , Masculino , Tretinoína/farmacologia , Espermatogênese/genética , Espermatogônias , Espermatozoides , Meiose/genética , Mamíferos
13.
Proc Natl Acad Sci U S A ; 120(24): e2219480120, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37276388

RESUMO

Reputations provide a powerful mechanism to sustain cooperation, as individuals cooperate with those of good social standing. But how should someone's reputation be updated as we observe their social behavior, and when will a population converge on a shared norm for judging behavior? Here, we develop a mathematical model of cooperation conditioned on reputations, for a population that is stratified into groups. Each group may subscribe to a different social norm for assessing reputations and so norms compete as individuals choose to move from one group to another. We show that a group initially comprising a minority of the population may nonetheless overtake the entire population-especially if it adopts the Stern Judging norm, which assigns a bad reputation to individuals who cooperate with those of bad standing. When individuals do not change group membership, stratifying reputation information into groups tends to destabilize cooperation, unless individuals are strongly insular and favor in-group social interactions. We discuss the implications of our results for the structure of information flow in a population and for the evolution of social norms of judgment.


Assuntos
Comportamento Cooperativo , Modelos Psicológicos , Humanos , Comportamento Social , Normas Sociais , Evolução Biológica , Teoria dos Jogos
14.
Proc Natl Acad Sci U S A ; 120(49): e2305763120, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38015845

RESUMO

Marine dissolved organic nitrogen (DON) is one of the planet's largest reservoirs of fixed N, which persists even in the N-limited oligotrophic surface ocean. The vast majority of the ocean's total DON reservoir is refractory (RDON), primarily composed of low molecular weight (LMW) compounds in the subsurface and deep sea. However, the composition of this major N pool, as well as the reasons for its accumulation and persistence, are not understood. Past characterization of the analytically more tractable, but quantitatively minor, high molecular weight (HMW) DON fraction revealed a functionally simple amide-dominated composition. While extensive work in the past two decades has revealed enormous complexity and structural diversity in LMW dissolved organic carbon, no efforts have specifically targeted LMW nitrogenous molecules. Here, we report the first coupled isotopic and solid-state NMR structural analysis of LMW DON isolated throughout the water column in two ocean basins. Together these results provide a first view into the composition, potential sources, and cycling of this dominant portion of marine DON. Our data indicate that RDON is dominated by 15N-depleted heterocyclic-N structures, entirely distinct from previously characterized HMW material. This fundamentally new view of marine DON composition suggests an important structural control for RDON accumulation and persistence in the ocean. The mechanisms of production, cycling, and removal of these heterocyclic-N-containing compounds now represents a central challenge in our understanding of the ocean's DON reservoir.

15.
Plant J ; 117(2): 404-415, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37856521

RESUMO

By conducting hierarchical clustering along a sliding window, we generated haplotypes across hundreds of re-sequenced genomes in a few hours. We leveraged our method to define cryptic introgressions underlying disease resistance in tomato (Solanum lycopersicum L.) and to discover resistant germplasm in the tomato seed bank. The genomes of 9 accessions with early blight (Alternaria linariae) disease resistance were newly sequenced and analyzed together with published sequences for 770 tomato and wild species accessions, most of which are available in germplasm collections. Identification of common ancestral haplotypes among resistant germplasm enabled rapid fine mapping of recently discovered quantitative trait loci (QTL) conferring resistance and the identification of possible causal variants. The source of the early blight QTL EB-9 was traced to a vintage tomato named 'Devon Surprise'. Another QTL, EB-5, as well as resistance to bacterial spot disease (Xanthomonas spp.), was traced to Hawaii 7998. A genomic survey of all accessions forecasted EB-9-derived resistance in several heirloom tomatoes, accessions of S. lycopersicum var. cerasiforme, and S. pimpinellifolium PI 37009. Our haplotype-based predictions were validated by screening the accessions against the causal pathogen. There was little evidence of EB-5 prevalence in surveyed contemporary germplasm, presenting an opportunity to bolster tomato disease resistance by adding this rare locus. Our work demonstrates practical insights that can be derived from the efficient processing of large genome-scale datasets, including rapid functional prediction of disease resistance QTL in diverse genetic backgrounds. Finally, our work finds more efficient ways to leverage public genetic resources for crop improvement.


Assuntos
Solanum lycopersicum , Solanum lycopersicum/genética , Locos de Características Quantitativas/genética , Resistência à Doença/genética , Fenótipo , Genômica , Doenças das Plantas/genética , Doenças das Plantas/microbiologia
16.
PLoS Pathog ; 19(10): e1011682, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37782657

RESUMO

Human cytomegalovirus (HCMV) encodes multiple putative G protein-coupled receptors (GPCRs). US28 functions as a viral chemokine receptor and is expressed during both latent and lytic phases of virus infection. US28 actively promotes cellular migration, transformation, and plays a major role in mediating viral latency and reactivation; however, knowledge about the interaction partners involved in these processes is still incomplete. Herein, we utilized a proximity-dependent biotinylating enzyme (TurboID) to characterize the US28 interactome when expressed in isolation, and during both latent (CD34+ hematopoietic progenitor cells) and lytic (fibroblasts) HCMV infection. Our analyses indicate that the US28 signalosome converges with RhoA and EGFR signal transduction pathways, sharing multiple mediators that are major actors in processes such as cellular proliferation and differentiation. Integral members of the US28 signaling complex were validated in functional assays by immunoblot and small-molecule inhibitors. Importantly, we identified RhoGEFs as key US28 signaling intermediaries. In vitro latency and reactivation assays utilizing primary CD34+ hematopoietic progenitor cells (HPCs) treated with the small-molecule inhibitors Rhosin or Y16 indicated that US28 -RhoGEF interactions are required for efficient viral reactivation. These findings were recapitulated in vivo using a humanized mouse model where inhibition of RhoGEFs resulted in a failure of the virus to reactivate. Together, our data identifies multiple new proteins in the US28 interactome that play major roles in viral latency and reactivation, highlights the utility of proximity-sensor labeling to characterize protein interactomes, and provides insight into targets for the development of novel anti-HCMV therapeutics.


Assuntos
Citomegalovirus , Transdução de Sinais , Animais , Camundongos , Humanos , Citomegalovirus/fisiologia , Latência Viral , Diferenciação Celular , Células-Tronco Hematopoéticas
17.
PLoS Comput Biol ; 20(3): e1011862, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38427626

RESUMO

Social reputations provide a powerful mechanism to stimulate human cooperation, but observing individual reputations can be cognitively costly. To ease this burden, people may rely on proxies such as stereotypes, or generalized reputations assigned to groups. Such stereotypes are less accurate than individual reputations, and so they could disrupt the positive feedback between altruistic behavior and social standing, undermining cooperation. How do stereotypes impact cooperation by indirect reciprocity? We develop a theoretical model of group-structured populations in which individuals are assigned either individual reputations based on their own actions or stereotyped reputations based on their groups' behavior. We find that using stereotypes can produce either more or less cooperation than using individual reputations, depending on how widely reputations are shared. Deleterious outcomes can arise when individuals adapt their propensity to stereotype. Stereotyping behavior can spread and can be difficult to displace, even when it compromises collective cooperation and even though it makes a population vulnerable to invasion by defectors. We discuss the implications of our results for the prevalence of stereotyping and for reputation-based cooperation in structured populations.


Assuntos
Comportamento Cooperativo , Modelos Psicológicos , Humanos , Altruísmo , Comportamento de Massa
18.
Brain ; 147(6): 2053-2068, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38739752

RESUMO

Aggregation of the RNA-binding protein TAR DNA binding protein (TDP-43) is a hallmark of TDP-proteinopathies including amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). As TDP-43 aggregation and dysregulation are causative of neuronal death, there is a special interest in targeting this protein as a therapeutic approach. Previously, we found that TDP-43 extensively co-aggregated with the dual function protein GEF (guanine exchange factor) and RNA-binding protein rho guanine nucleotide exchange factor (RGNEF) in ALS patients. Here, we show that an N-terminal fragment of RGNEF (NF242) interacts directly with the RNA recognition motifs of TDP-43 competing with RNA and that the IPT/TIG domain of NF242 is essential for this interaction. Genetic expression of NF242 in a fruit fly ALS model overexpressing TDP-43 suppressed the neuropathological phenotype increasing lifespan, abolishing motor defects and preventing neurodegeneration. Intracerebroventricular injections of AAV9/NF242 in a severe TDP-43 murine model (rNLS8) improved lifespan and motor phenotype, and decreased neuroinflammation markers. Our results demonstrate an innovative way to target TDP-43 proteinopathies using a protein fragment with a strong affinity for TDP-43 aggregates and a mechanism that includes competition with RNA sequestration, suggesting a promising therapeutic strategy for TDP-43 proteinopathies such as ALS and FTD.


Assuntos
Esclerose Lateral Amiotrófica , Proteínas de Ligação a DNA , Modelos Animais de Doenças , Fatores de Troca do Nucleotídeo Guanina , Fenótipo , Animais , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Camundongos , Humanos , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Drosophila , Camundongos Transgênicos , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Masculino
19.
Nature ; 567(7747): 249-252, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30842658

RESUMO

The liver is the most common site of metastatic disease1. Although this metastatic tropism may reflect the mechanical trapping of circulating tumour cells, liver metastasis is also dependent, at least in part, on the formation of a 'pro-metastatic' niche that supports the spread of tumour cells to the liver2,3. The mechanisms that direct the formation of this niche are poorly understood. Here we show that hepatocytes coordinate myeloid cell accumulation and fibrosis within the liver and, in doing so, increase the susceptibility of the liver to metastatic seeding and outgrowth. During early pancreatic tumorigenesis in mice, hepatocytes show activation of signal transducer and activator of transcription 3 (STAT3) signalling and increased production of serum amyloid A1 and A2 (referred to collectively as SAA). Overexpression of SAA by hepatocytes also occurs in patients with pancreatic and colorectal cancers that have metastasized to the liver, and many patients with locally advanced and metastatic disease show increases in circulating SAA. Activation of STAT3 in hepatocytes and the subsequent production of SAA depend on the release of interleukin 6 (IL-6) into the circulation by non-malignant cells. Genetic ablation or blockade of components of IL-6-STAT3-SAA signalling prevents the establishment of a pro-metastatic niche and inhibits liver metastasis. Our data identify an intercellular network underpinned by hepatocytes that forms the basis of a pro-metastatic niche in the liver, and identify new therapeutic targets.


Assuntos
Hepatócitos/patologia , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/secundário , Fígado/patologia , Metástase Neoplásica , Neoplasias Pancreáticas/patologia , Microambiente Tumoral , Animais , Carcinoma Ductal Pancreático/patologia , Neoplasias Colorretais/patologia , Neoplasias Colorretais/secundário , Feminino , Interleucina-6/metabolismo , Masculino , Camundongos , Fator de Transcrição STAT3/metabolismo , Proteína Amiloide A Sérica/metabolismo
20.
PLoS Genet ; 18(9): e1010416, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36129965

RESUMO

Control over gene expression is exerted, in multiple stages of spermatogenesis, at the post-transcriptional level by RNA binding proteins (RBPs). We identify here an essential role in mammalian spermatogenesis and male fertility for 'RNA binding protein 46' (RBM46). A highly evolutionarily conserved gene, Rbm46 is also essential for fertility in both flies and fish. We found Rbm46 expression was restricted to the mouse germline, detectable in males in the cytoplasm of premeiotic spermatogonia and meiotic spermatocytes. To define its requirement for spermatogenesis, we generated Rbm46 knockout (KO, Rbm46-/-) mice; although male Rbm46-/- mice were viable and appeared grossly normal, they were infertile. Testes from adult Rbm46-/- mice were small, with seminiferous tubules containing only Sertoli cells and few undifferentiated spermatogonia. Using genome-wide unbiased high throughput assays RNA-seq and 'enhanced crosslinking immunoprecipitation' coupled with RNA-seq (eCLIP-seq), we discovered RBM46 could bind, via a U-rich conserved consensus sequence, to a cohort of mRNAs encoding proteins required for completion of differentiation and subsequent meiotic initiation. In summary, our studies support an essential role for RBM46 in regulating target mRNAs during spermatogonia differentiation prior to the commitment to meiosis in mice.


Assuntos
Proteínas de Ligação a RNA/metabolismo , Espermatogênese , Espermatogônias , Animais , Diferenciação Celular/genética , Masculino , Mamíferos/genética , Meiose/genética , Camundongos , Camundongos Knockout , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Espermatócitos/metabolismo , Espermatogênese/genética , Espermatogônias/metabolismo , Testículo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA