RESUMO
A one-pot Curtius rearrangement of dienyl carboxylic acids followed by a 6π-electrocyclization process to form substituted 2-pyridone products has been developed. Dienyl isocyanates generated from aliphatic acids were more reactive than their aromatic counterparts. Additionally, substitution patterns of the carboxylic acids had an impact on the efficiency of the cyclization.
Assuntos
Isocianatos , Piridonas , Ácidos Carboxílicos , CiclizaçãoRESUMO
Sulfonyl fluoride (SF)-based activity probes have become important tools in chemical biology. Herein, exploiting the relative chemical stability of SF to carry out a number of unprecedented SF-sparing functional group manipulations, we report the chemoselective synthesis of a toolbox of highly functionalized aryl SF monomers that we used to quickly prepare SF chemical biology probes. In addition to SF, the monomers bear an embedded click handle (a terminal alkyne that can perform copper(I)-mediated azide-alkyne cycloaddition). The monomers can be used either as fragments to prepare clickable SF analogues of drugs (biologically active compounds) bearing an aryl ring or, alternatively, attached to drugs as minimalist clickable aryl SF substituents.
Assuntos
Sondas Moleculares/síntese química , Ácidos Sulfínicos/síntese química , Química Click , Modelos Moleculares , Sondas Moleculares/química , Estrutura Molecular , Ácidos Sulfínicos/químicaRESUMO
New advances in synthetic methodologies that allow rapid access to a wide variety of functionalized heterocyclic compounds are of critical importance to the medicinal chemist as it provides the ability to expand the available drug-like chemical space and drive more efficient delivery of drug discovery programs. Furthermore, the development of robust synthetic routes that can readily generate bulk quantities of a desired compound help to accelerate the drug development process. While established synthetic methodologies are commonly utilized during the course of a drug discovery program, the development of innovative heterocyclic syntheses that allow for different bond forming strategies are having a significant impact in the pharmaceutical industry. This review will focus on recent applications of new methodologies in C-H activation, photoredox chemistry, borrowing hydrogen catalysis, multicomponent reactions, regio- and stereoselective syntheses, as well as other new, innovative general syntheses for the formation and functionalization of heterocycles that have helped drive project delivery. Additionally, the importance and value of collaborations between industry and academia in shaping the development of innovative synthetic approaches to functionalized heterocycles that are of greatest interest to the pharmaceutical industry will be highlighted.
Assuntos
Técnicas de Química Sintética/métodos , Descoberta de Drogas/métodos , Compostos Heterocíclicos/síntese química , Compostos Heterocíclicos/química , Compostos Heterocíclicos/farmacologia , Humanos , Oxirredução , Processos Fotoquímicos , EstereoisomerismoRESUMO
Macrocyclic retinoic acid receptor-related orphan receptor C2 (RORC2) inverse agonists have been designed with favorable properties for topical administration. Inspired by the unanticipated bound conformation of an acyclic sulfonamide-based RORC2 ligand from cocrystal structure analysis, macrocyclic linker connections between the halves of the molecule were explored. Further optimization of analogues was accomplished to maximize potency and refine physiochemical properties (MW, lipophilicity) best suited for topical application. Compound 14 demonstrated potent inhibition of interleukin-17A (IL-17A) production by human Th17 cells and in vitro permeation through healthy human skin achieving high total compound concentration in both skin epidermis and dermis layers.
RESUMO
The first Pd-catalyzed arylation of aza-Achmatowicz rearrangement products with arylboronic acids is achieved, providing versatile 2-aryldihydropyridinones for facile synthesis of highly functionalized 2-arylpiperidines. Key to this arylation is the use of non-phosphine-ligand palladium precatalyst. The substrate scope is demonstrated with >26 examples, and the utility of 2-aryldihydropyridinones is illustrated by the synthesis of a small collection of 2-arylpiperidines with substituents or functional groups at any carbon (C2-C6) as well as two NK1 receptor antagonists (+)-CP-999,94 and (+)-L-733,060.
RESUMO
The first chemical probe to primarily occupy the co-factor binding site of a Su(var)3-9, enhancer of a zeste, trithorax (SET) domain containing protein lysine methyltransferase (PKMT) is reported. Protein methyltransferases require S-adenosylmethionine (SAM) as a co-factor (methyl donor) for enzymatic activity. However, SAM itself represents a poor medicinal chemistry starting point for a selective, cell-active inhibitor given its extreme physicochemical properties and its role in multiple cellular processes. A previously untested medicinal chemistry strategy of deliberate file enrichment around molecules bearing the hallmarks of SAM, but with improved lead-like properties from the outset, yielded viable hits against SET and MYND domain-containing protein 2 (SMYD2) that were shown to bind in the co-factor site. These leads were optimized to identify a highly biochemically potent, PKMT-selective, and cell-active chemical probe. While substrate-based inhibitors of PKMTs are known, this represents a novel, co-factor-derived strategy for the inhibition of SMYD2 which may also prove applicable to lysine methyltransferase family members previously thought of as intractable.
Assuntos
Inibidores Enzimáticos/farmacologia , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , S-Adenosilmetionina/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia , Sítios de Ligação/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Histona-Lisina N-Metiltransferase/isolamento & purificação , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Modelos Moleculares , Estrutura Molecular , S-Adenosilmetionina/química , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-AtividadeRESUMO
1,3-Diols engage in ruthenium-catalyzed hydrogen transfer in the presence of alkyl hydrazines to provide 1,4-disubstituted pyrazoles. Regioselective synthesis of unsymmetrical pyrazoles from ß-hydroxy ketones is also described.