RESUMO
The specific nature of CRISPR-Cas12a makes it a desirable RNA-guided endonuclease for biotechnology and therapeutic applications. To understand how R-loop formation within the compact Cas12a enables target recognition and nuclease activation, we used cryo-electron microscopy to capture wild-type Acidaminococcus sp. Cas12a R-loop intermediates and DNA delivery into the RuvC active site. Stages of Cas12a R-loop formation-starting from a 5-bp seed-are marked by distinct REC domain arrangements. Dramatic domain flexibility limits contacts until nearly complete R-loop formation, when the non-target strand is pulled across the RuvC nuclease and coordinated domain docking promotes efficient cleavage. Next, substantial domain movements enable target strand repositioning into the RuvC active site. Between cleavage events, the RuvC lid conformationally resets to occlude the active site, requiring re-activation. These snapshots build a structural model depicting Cas12a DNA targeting that rationalizes observed specificity and highlights mechanistic comparisons to other class 2 effectors.
Assuntos
Acidaminococcus , Proteínas de Bactérias , Proteínas Associadas a CRISPR , Sistemas CRISPR-Cas , Domínio Catalítico , Microscopia Crioeletrônica , Proteínas Associadas a CRISPR/metabolismo , Proteínas Associadas a CRISPR/química , Proteínas Associadas a CRISPR/genética , Acidaminococcus/enzimologia , Acidaminococcus/genética , Acidaminococcus/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Estruturas R-Loop/genética , Endodesoxirribonucleases/metabolismo , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/química , RNA Guia de Sistemas CRISPR-Cas/metabolismo , RNA Guia de Sistemas CRISPR-Cas/genética , Modelos Moleculares , Domínios Proteicos , Relação Estrutura-Atividade , Ligação ProteicaRESUMO
Type I CRISPR-Cas systems employ multi-subunit Cascade effector complexes to target foreign nucleic acids for destruction. Here, we present structures of D. vulgaris type I-C Cascade at various stages of double-stranded (ds)DNA target capture, revealing mechanisms that underpin PAM recognition and Cascade allosteric activation. We uncover an interesting mechanism of non-target strand (NTS) DNA stabilization via stacking interactions with the "belly" subunits, securing the NTS in place. This "molecular seatbelt" mechanism facilitates efficient R-loop formation and prevents dsDNA reannealing. Additionally, we provide structural insights into how two anti-CRISPR (Acr) proteins utilize distinct strategies to achieve a shared mechanism of type I-C Cascade inhibition by blocking PAM scanning. These observations form a structural basis for directional R-loop formation and reveal how different Acr proteins have converged upon common molecular mechanisms to efficiently shut down CRISPR immunity.
Assuntos
Proteínas Associadas a CRISPR , Estruturas R-Loop , Conformação Proteica , Modelos Moleculares , DNA/genética , Sistemas CRISPR-Cas , Proteínas Associadas a CRISPR/genéticaRESUMO
Most short-lived eukaryotic proteins are degraded by the proteasome. A proteolytic core particle (CP) capped by regulatory particles (RPs) constitutes the 26S proteasome complex. RP biogenesis culminates with the joining of two large subcomplexes, the lid and base. In yeast and mammals, the lid appears to assemble completely before attaching to the base, but how this hierarchical assembly is enforced has remained unclear. Using biochemical reconstitutions, quantitative cross-linking/mass spectrometry, and electron microscopy, we resolve the mechanistic basis for the linkage between lid biogenesis and lid-base joining. Assimilation of the final lid subunit, Rpn12, triggers a large-scale conformational remodeling of the nascent lid that drives RP assembly, in part by relieving steric clash with the base. Surprisingly, this remodeling is triggered by a single Rpn12 α helix. Such assembly-coupled conformational switching is reminiscent of viral particle maturation and may represent a commonly used mechanism to enforce hierarchical assembly in multisubunit complexes.
Assuntos
Complexo de Endopeptidases do Proteassoma/química , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Escherichia coli/metabolismo , Espectrometria de Massas , Microscopia Eletrônica , Modelos Moleculares , Estrutura Secundária de Proteína , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismoRESUMO
Although eukaryotic Argonautes have a pivotal role in post-transcriptional gene regulation through nucleic acid cleavage, some short prokaryotic Argonaute variants (pAgos) rely on auxiliary nuclease factors for efficient foreign DNA degradation1. Here we reveal the activation pathway of the DNA defence module DdmDE system, which rapidly eliminates small, multicopy plasmids from the Vibrio cholerae seventh pandemic strain (7PET)2. Through a combination of cryo-electron microscopy, biochemistry and in vivo plasmid clearance assays, we demonstrate that DdmE is a catalytically inactive, DNA-guided, DNA-targeting pAgo with a distinctive insertion domain. We observe that the helicase-nuclease DdmD transitions from an autoinhibited, dimeric complex to a monomeric state upon loading of single-stranded DNA targets. Furthermore, the complete structure of the DdmDE-guide-target handover complex provides a comprehensive view into how DNA recognition triggers processive plasmid destruction. Our work establishes a mechanistic foundation for how pAgos utilize ancillary factors to achieve plasmid clearance, and provides insights into anti-plasmid immunity in bacteria.
Assuntos
Proteínas Argonautas , Proteínas de Bactérias , Plasmídeos , Vibrio cholerae , Proteínas Argonautas/química , Proteínas Argonautas/metabolismo , Proteínas Argonautas/ultraestrutura , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/ultraestrutura , Microscopia Crioeletrônica , Desoxirribonucleases/química , Desoxirribonucleases/metabolismo , Desoxirribonucleases/ultraestrutura , DNA Helicases/química , DNA Helicases/metabolismo , DNA Helicases/ultraestrutura , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , Modelos Moleculares , Plasmídeos/genética , Plasmídeos/imunologia , Plasmídeos/metabolismo , Domínios Proteicos , Multimerização Proteica , Vibrio cholerae/genética , Vibrio cholerae/imunologia , Vibrio cholerae/patogenicidadeRESUMO
Cas12a2 is a CRISPR-associated nuclease that performs RNA-guided, sequence-nonspecific degradation of single-stranded RNA, single-stranded DNA and double-stranded DNA following recognition of a complementary RNA target, culminating in abortive infection1. Here we report structures of Cas12a2 in binary, ternary and quaternary complexes to reveal a complete activation pathway. Our structures reveal that Cas12a2 is autoinhibited until binding a cognate RNA target, which exposes the RuvC active site within a large, positively charged cleft. Double-stranded DNA substrates are captured through duplex distortion and local melting, stabilized by pairs of 'aromatic clamp' residues that are crucial for double-stranded DNA degradation and in vivo immune system function. Our work provides a structural basis for this mechanism of abortive infection to achieve population-level immunity, which can be leveraged to create rational mutants that degrade a spectrum of collateral substrates.
Assuntos
Proteínas Associadas a CRISPR , Sistemas CRISPR-Cas , RNA , Proteínas Associadas a CRISPR/antagonistas & inibidores , Proteínas Associadas a CRISPR/metabolismo , DNA/química , DNA/imunologia , DNA/metabolismo , RNA/química , RNA/metabolismo , Ativação Enzimática , Domínio Catalítico , Especificidade por SubstratoRESUMO
Remdesivir is a nucleoside analog approved by the US FDA for treatment of COVID-19. Here, we present a 3.9-Å-resolution cryo-EM reconstruction of a remdesivir-stalled RNA-dependent RNA polymerase complex, revealing full incorporation of 3 copies of remdesivir monophosphate (RMP) and a partially incorporated fourth RMP in the active site. The structure reveals that RMP blocks RNA translocation after incorporation of 3 bases following RMP, resulting in delayed chain termination, which can guide the rational design of improved antiviral drugs.
Assuntos
Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , Antivirais/química , RNA Viral/química , RNA Polimerase Dependente de RNA/química , SARS-CoV-2/fisiologia , Replicação Viral , Monofosfato de Adenosina/química , Monofosfato de Adenosina/uso terapêutico , Alanina/química , Alanina/uso terapêutico , Antivirais/uso terapêutico , Domínio Catalítico , Humanos , Proteínas ViraisRESUMO
Many bacteria contain an ortholog of the Ro autoantigen, a ring-shaped protein that binds noncoding RNAs (ncRNAs) called Y RNAs. In the only studied bacterium, Deinococcus radiodurans, the Ro ortholog Rsr functions in heat-stress-induced ribosomal RNA (rRNA) maturation and starvation-induced rRNA decay. However, the mechanism by which this conserved protein and its associated ncRNAs act has been obscure. We report that Rsr and the exoribonuclease polynucleotide phosphorylase (PNPase) form an RNA degradation machine that is scaffolded by Y RNA. Single-particle electron microscopy, followed by docking of atomic models into the reconstruction, suggests that Rsr channels single-stranded RNA into the PNPase cavity. Biochemical assays reveal that Rsr and Y RNA adapt PNPase for effective degradation of structured RNAs. A Ro ortholog and ncRNA also associate with PNPase in Salmonella Typhimurium. Our studies identify another ribonucleoprotein machine and demonstrate that ncRNA, by tethering a protein cofactor, can alter the substrate specificity of an enzyme.
Assuntos
Deinococcus/química , Complexo Multienzimático de Ribonucleases do Exossomo/química , Estabilidade de RNA , RNA Bacteriano/química , RNA não Traduzido/metabolismo , Ribonucleoproteínas/metabolismo , Salmonella typhimurium/metabolismo , Animais , Sequência de Bases , Deinococcus/genética , Deinococcus/metabolismo , Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , Dados de Sequência Molecular , Polirribonucleotídeo Nucleotidiltransferase/química , Polirribonucleotídeo Nucleotidiltransferase/ultraestrutura , RNA Bacteriano/ultraestrutura , RNA não Traduzido/ultraestrutura , Ribonucleoproteínas/química , Ribonucleoproteínas/genética , Xenopus laevis/metabolismoRESUMO
CRISPR-Cas9 as a programmable genome editing tool is hindered by off-target DNA cleavage1-4, and the underlying mechanisms by which Cas9 recognizes mismatches are poorly understood5-7. Although Cas9 variants with greater discrimination against mismatches have been designed8-10, these suffer from substantially reduced rates of on-target DNA cleavage5,11. Here we used kinetics-guided cryo-electron microscopy to determine the structure of Cas9 at different stages of mismatch cleavage. We observed a distinct, linear conformation of the guide RNA-DNA duplex formed in the presence of mismatches, which prevents Cas9 activation. Although the canonical kinked guide RNA-DNA duplex conformation facilitates DNA cleavage, we observe that substrates that contain mismatches distal to the protospacer adjacent motif are stabilized by reorganization of a loop in the RuvC domain. Mutagenesis of mismatch-stabilizing residues reduces off-target DNA cleavage but maintains rapid on-target DNA cleavage. By targeting regions that are exclusively involved in mismatch tolerance, we provide a proof of concept for the design of next-generation high-fidelity Cas9 variants.
Assuntos
Sistemas CRISPR-Cas , Reparo de Erro de Pareamento de DNA , Edição de Genes , RNA Guia de Cinetoplastídeos , Proteína 9 Associada à CRISPR/genética , Microscopia Crioeletrônica , DNA/química , DNA/genética , Conformação de Ácido Nucleico , RNA Guia de Cinetoplastídeos/genéticaRESUMO
CRISPR-Cas adaptive immune systems provide prokaryotes with defense against viruses by degradation of specific invading nucleic acids. Despite advances in the biotechnological exploitation of select systems, multiple CRISPR-Cas types remain uncharacterized. Here, we investigated the previously uncharacterized type I-D interference complex and revealed that it is a genetic and structural hybrid with similarity to both type I and type III systems. Surprisingly, formation of the functional complex required internal in-frame translation of small subunits from within the large subunit gene. We further show that internal translation to generate small subunits is widespread across diverse type I-D, I-B, and I-C systems, which account for roughly one quarter of CRISPR-Cas systems. Our work reveals the unexpected expansion of protein coding potential from within single cas genes, which has important implications for understanding CRISPR-Cas function and evolution.
Assuntos
Imunidade Adaptativa/genética , Proteínas Associadas a CRISPR/genética , Sistemas CRISPR-Cas/genética , Evolução Molecular , Proteínas Associadas a CRISPR/imunologia , Células Procarióticas/imunologia , Células Procarióticas/virologia , Biossíntese de Proteínas , Vírus/imunologiaRESUMO
CRISPR-Cas immune systems integrate short segments of foreign DNA as spacers into the host CRISPR locus to provide molecular memory of infection. Cas4 proteins are widespread in CRISPR-Cas systems and are thought to participate in spacer acquisition, although their exact function remains unknown. Here we show that Bacillus halodurans type I-C Cas4 is required for efficient prespacer processing prior to Cas1-Cas2-mediated integration. Cas4 interacts tightly with the Cas1 integrase, forming a heterohexameric complex containing two Cas1 dimers and two Cas4 subunits. In the presence of Cas1 and Cas2, Cas4 processes double-stranded substrates with long 3' overhangs through site-specific endonucleolytic cleavage. Cas4 recognizes PAM sequences within the prespacer and prevents integration of unprocessed prespacers, ensuring that only functional spacers will be integrated into the CRISPR array. Our results reveal the critical role of Cas4 in maintaining fidelity during CRISPR adaptation, providing a structural and mechanistic model for prespacer processing and integration.
Assuntos
Proteína 9 Associada à CRISPR/genética , Proteínas Associadas a CRISPR/genética , Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , DNA Bacteriano/genética , Escherichia coli/genética , Edição de Genes/métodos , Proteína 9 Associada à CRISPR/imunologia , Proteína 9 Associada à CRISPR/isolamento & purificação , Proteína 9 Associada à CRISPR/metabolismo , Proteínas Associadas a CRISPR/imunologia , Proteínas Associadas a CRISPR/metabolismo , DNA Bacteriano/imunologia , DNA Bacteriano/metabolismo , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/metabolismo , Escherichia coli/enzimologia , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Modelos Moleculares , Complexos Multienzimáticos , Conformação de Ácido Nucleico , Conformação Proteica , Subunidades Proteicas , Especificidade por SubstratoRESUMO
Membrane-associated protein phase separation plays critical roles in cell biology, driving essential cellular phenomena from immune signaling to membrane traffic. Importantly, by reducing dimensionality from three to two dimensions, lipid bilayers can nucleate phase separation at far lower concentrations compared with those required for phase separation in solution. How might other intracellular lipid substrates, such as lipid droplets, contribute to nucleation of phase separation? Distinct from bilayer membranes, lipid droplets consist of a phospholipid monolayer surrounding a core of neutral lipids, and they are energy storage organelles that protect cells from lipotoxicity and oxidative stress. Here, we show that intrinsically disordered proteins can undergo phase separation on the surface of synthetic and cell-derived lipid droplets. Specifically, we find that the model disordered domains FUS LC and LAF-1 RGG separate into protein-rich and protein-depleted phases on the surfaces of lipid droplets. Owing to the hydrophobic nature of interactions between FUS LC proteins, increasing ionic strength drives an increase in its phase separation on droplet surfaces. The opposite is true for LAF-1 RGG, owing to the electrostatic nature of its interprotein interactions. In both cases, protein-rich phases on the surfaces of synthetic and cell-derived lipid droplets demonstrate molecular mobility indicative of a liquid-like state. Our results show that lipid droplets can nucleate protein condensates, suggesting that protein phase separation could be key in organizing biological processes involving lipid droplets.
Assuntos
Gotículas Lipídicas , Gotículas Lipídicas/química , Gotículas Lipídicas/metabolismo , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/metabolismo , Humanos , Proteína FUS de Ligação a RNA/química , Proteína FUS de Ligação a RNA/metabolismo , Transição de Fase , Interações Hidrofóbicas e Hidrofílicas , Domínios Proteicos , Separação de FasesRESUMO
Bacteria employ surveillance complexes guided by CRISPR (clustered, regularly interspaced, short palindromic repeats) RNAs (crRNAs) to target foreign nucleic acids for destruction. Although most type I and type III CRISPR systems require four or more distinct proteins to form multi-subunit surveillance complexes, the type I-C systems use just three proteins to achieve crRNA maturation and double-stranded DNA target recognition. We show that each protein plays multiple functional and structural roles: Cas5c cleaves pre-crRNAs and recruits Cas7 to position the RNA guide for DNA binding and unwinding by Cas8c. Cryoelectron microscopy reconstructions of free and DNA-bound forms of the Cascade/I-C surveillance complex reveal conformational changes that enable R-loop formation with distinct positioning of each DNA strand. This streamlined type I-C system explains how CRISPR pathways can evolve compact structures that retain full functionality as RNA-guided DNA capture platforms.
Assuntos
Proteínas de Bactérias/genética , Sistemas CRISPR-Cas , DNA/genética , Desulfovibrio vulgaris/genética , Endonucleases/genética , RNA Bacteriano/genética , RNA Guia de Cinetoplastídeos/genética , Motivos de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Clonagem Molecular , Microscopia Crioeletrônica , DNA/química , DNA/metabolismo , Desulfovibrio vulgaris/metabolismo , Endonucleases/química , Endonucleases/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Edição de Genes , Expressão Gênica , Cinética , Modelos Moleculares , Conformação de Ácido Nucleico , Óperon , Ligação Proteica , Conformação Proteica em alfa-Hélice , Domínios e Motivos de Interação entre Proteínas , RNA Bacteriano/química , RNA Bacteriano/metabolismo , RNA Guia de Cinetoplastídeos/química , RNA Guia de Cinetoplastídeos/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por SubstratoRESUMO
CRISPR-Cas is a prokaryotic adaptive immune system that provides sequence-specific defense against foreign nucleic acids. Here we report the structure and function of the effector complex of the Type III-A CRISPR-Cas system of Thermus thermophilus: the Csm complex (TtCsm). TtCsm is composed of five different protein subunits (Csm1-Csm5) with an uneven stoichiometry and a single crRNA of variable size (35-53 nt). The TtCsm crRNA content is similar to the Type III-B Cmr complex, indicating that crRNAs are shared among different subtypes. A negative stain EM structure of the TtCsm complex exhibits the characteristic architecture of Type I and Type III CRISPR-associated ribonucleoprotein complexes. crRNA-protein crosslinking studies show extensive contacts between the Csm3 backbone and the bound crRNA. We show that, like TtCmr, TtCsm cleaves complementary target RNAs at multiple sites. Unlike Type I complexes, interference by TtCsm does not proceed via initial base pairing by a seed sequence.
Assuntos
Proteínas de Bactérias/metabolismo , Proteínas Associadas a CRISPR/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Clivagem do RNA , Thermus thermophilus/genética , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/ultraestrutura , Sequência de Bases , Proteínas Associadas a CRISPR/química , Proteínas Associadas a CRISPR/ultraestrutura , Endorribonucleases/química , Endorribonucleases/metabolismo , Endorribonucleases/ultraestrutura , Microscopia Eletrônica , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Estrutura Quaternária de Proteína , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , Thermus thermophilus/enzimologiaRESUMO
Protein-protein interactions are critical to protein function, but three-dimensional (3D) arrangements of interacting proteins have proven hard to predict, even given the identities and 3D structures of the interacting partners. Specifically, identifying the relevant pairwise interaction surfaces remains difficult, often relying on shape complementarity with molecular docking while accounting for molecular motions to optimize rigid 3D translations and rotations. However, such approaches can be computationally expensive, and faster, less accurate approximations may prove useful for large-scale prediction and assembly of 3D structures of multi-protein complexes. We asked if a reduced representation of protein geometry retains enough information about molecular properties to predict pairwise protein interaction interfaces that are tolerant of limited structural rearrangements. Here, we describe a reduced representation of 3D protein accessible surfaces on which molecular properties such as charge, hydrophobicity, and evolutionary rate can be easily mapped, implemented in the MorphProt package. Pairs of surfaces are compared to rapidly assess partner-specific potential surface complementarity. On two available benchmarks of 185 overall known protein complexes, we observe predictions comparable to other structure-based tools at correctly identifying protein interaction surfaces. Furthermore, we examined the effect of molecular motion through normal mode simulation on a benchmark receptor-ligand pair and observed no marked loss of predictive accuracy for distortions of up to 6 Å Cα-RMSD. Thus, a shape reduction of protein surfaces retains considerable information about surface complementarity, offers enhanced speed of comparison relative to more complex geometric representations, and exhibits tolerance to conformational changes.
Assuntos
Biologia Computacional/métodos , Simulação de Acoplamento Molecular/métodos , Proteínas , Ligação Proteica , Conformação Proteica , Mapeamento de Interação de Proteínas , Proteínas/química , Proteínas/metabolismoRESUMO
The CRISPR-Cas system is a prokaryotic host defense system against genetic elements. The Type III-B CRISPR-Cas system of the bacterium Thermus thermophilus, the TtCmr complex, is composed of six different protein subunits (Cmr1-6) and one crRNA with a stoichiometry of Cmr112131445361:crRNA1. The TtCmr complex copurifies with crRNA species of 40 and 46 nt, originating from a distinct subset of CRISPR loci and spacers. The TtCmr complex cleaves the target RNA at multiple sites with 6 nt intervals via a 5' ruler mechanism. Electron microscopy revealed that the structure of TtCmr resembles a "sea worm" and is composed of a Cmr2-3 heterodimer "tail," a helical backbone of Cmr4 subunits capped by Cmr5 subunits, and a curled "head" containing Cmr1 and Cmr6. Despite having a backbone of only four Cmr4 subunits and being both longer and narrower, the overall architecture of TtCmr resembles that of Type I Cascade complexes.
Assuntos
Proteínas de Bactérias/metabolismo , Proteínas Associadas a CRISPR/metabolismo , RNA Bacteriano/metabolismo , Ribonucleases/metabolismo , Thermus thermophilus/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas Associadas a CRISPR/química , Proteínas Associadas a CRISPR/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Sequenciamento de Nucleotídeos em Larga Escala , Microscopia Eletrônica , Modelos Moleculares , Conformação Proteica , Subunidades Proteicas , RNA Bacteriano/química , RNA Bacteriano/genética , Ribonucleases/química , Ribonucleases/genética , Análise de Sequência de RNA , Espectrometria de Massas por Ionização por Electrospray , Relação Estrutura-Atividade , Thermus thermophilus/genéticaRESUMO
Single particle analysis for structure determination in cryo-electron microscopy is traditionally applied to samples purified to near homogeneity as current reconstruction algorithms are not designed to handle heterogeneous mixtures of structures from many distinct macromolecular complexes. We extend on long established methods and demonstrate that relating two-dimensional projection images by their common lines in a graphical framework is sufficient for partitioning distinct protein and multiprotein complexes within the same data set. The feasibility of this approach is first demonstrated on a large set of synthetic reprojections from 35 unique macromolecular structures spanning a mass range of hundreds to thousands of kilodaltons. We then apply our algorithm on cryo-EM data collected from a mixture of five protein complexes and use existing methods to solve multiple three-dimensional structures ab initio. Incorporating methods to sort single particle cryo-EM data from extremely heterogeneous mixtures will alleviate the need for stringent purification and pave the way toward investigation of samples containing many unique structures.
Assuntos
Microscopia Crioeletrônica , Processamento de Imagem Assistida por Computador , Substâncias Macromoleculares/ultraestrutura , Complexos Multiproteicos/ultraestrutura , Imageamento Tridimensional , Substâncias Macromoleculares/química , Complexos Multiproteicos/químicaRESUMO
Cryo-electron microscopy (cryo-EM) has become an indispensable tool for structural studies of biological macromolecules. Two additional predominant methods are available for studying the architectures of multiprotein complexes: 1) single-particle analysis of purified samples and 2) tomography of whole cells or cell sections. The former can produce high-resolution structures but is limited to highly purified samples, whereas the latter can capture proteins in their native state but has a low signal-to-noise ratio and yields lower-resolution structures. Here, we present a simple, adaptable method combining microfluidic single-cell extraction with single-particle analysis by EM to characterize protein complexes from individual Caenorhabditis elegans embryos. Using this approach, we uncover 3D structures of ribosomes directly from single embryo extracts. Moreover, we investigated structural dynamics during development by counting the number of ribosomes per polysome in early and late embryos. This approach has significant potential applications for counting protein complexes and studying protein architectures from single cells in developmental, evolutionary, and disease contexts.
Assuntos
Proteínas de Caenorhabditis elegans/ultraestrutura , Caenorhabditis elegans/embriologia , Embrião não Mamífero/metabolismo , Substâncias Macromoleculares/ultraestrutura , Microscopia Eletrônica/métodos , Ribossomos/ultraestrutura , Análise de Célula Única/métodos , Animais , Caenorhabditis elegans/metabolismo , Embrião não Mamífero/citologia , Modelos BiológicosRESUMO
The aggregation of amyloid-ß (Aß) is associated with the onset of Alzheimer's disease (AD) and involves a complex kinetic pathway as monomers self-assemble into fibrils. A central feature of amyloid fibrils is the existence of multiple structural polymorphs, which complicates the development of disease-relevant structure-function relationships. Developing these relationships requires new methods to control fibril structure. In this work, we evaluated the effect that mesoporous silicas (SBA-15) functionalized with hydrophobic (SBA-PFDTS) and hydrophilic groups (SBA-PEG) have on the aggregation kinetics and resulting structure of Aß1-40 fibrils. The hydrophilic SBA-PEG had little effect on amyloid kinetics, while as-synthesized and hydrophobic SBA-PFDTS accelerated aggregation kinetics. Subsequently, we quantified the relative population of fibril structures formed in the presence of each material using electron microscopy. Fibrils formed from Aß1-40 exposed to SBA-PEG were structurally similar to control fibrils. In contrast, Aß1-40 incubated with SBA-15 or SBA-PFDTS formed fibrils with shorter crossover distances that were more structurally representative of fibrils found in AD patient derived samples. Overall, our results suggest that mesoporous silicas and other exogenous materials are promising scaffolds for the de novo production of specific fibril polymorphs of Aß1-40 and other amyloidogenic proteins.
Assuntos
Doença de Alzheimer , Amiloide , Peptídeos beta-Amiloides , Humanos , Cinética , Fragmentos de Peptídeos , Dióxido de SilícioRESUMO
Rapid developments in cryogenic electron microscopy have opened new avenues to probe the structures of protein assemblies in their near native states. Recent studies have begun applying single -particle analysis to heterogeneous mixtures, revealing the potential of structural-omics approaches that combine the power of mass spectrometry and electron microscopy. Here we highlight advances and challenges in sample preparation, data processing, and molecular modeling for handling increasingly complex mixtures. Such advances will help structural-omics methods extend to cellular-level models of structural biology.