Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
J Cardiovasc Magn Reson ; 24(1): 74, 2022 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-36544161

RESUMO

BACKGROUND: Atherosclerosis is an arterial vessel wall disease characterized by slow, progressive lipid accumulation, smooth muscle disorganization, and inflammatory infiltration. Atherosclerosis often remains subclinical until extensive inflammatory injury promotes vulnerability of the atherosclerotic plaque to rupture with luminal thrombosis, which can cause the acute event of myocardial infarction or stroke. Current bioimaging techniques are unable to capture the pathognomonic distribution of cellular elements of the plaque and thus cannot accurately define its structural disorganization. METHODS: We applied cardiovascular magnetic resonance spectroscopy (CMRS) and diffusion weighted CMR (DWI) with generalized Q-space imaging (GQI) analysis to architecturally define features of atheroma and correlated these to the microscopic distribution of vascular smooth muscle cells (SMC), immune cells, extracellular matrix (ECM) fibers, thrombus, and cholesteryl esters (CE). We compared rabbits with normal chow diet and cholesterol-fed rabbits with endothelial balloon injury, which accelerates atherosclerosis and produces advanced rupture-prone plaques, in a well-validated rabbit model of human atherosclerosis. RESULTS: Our methods revealed new structural properties of advanced atherosclerosis incorporating SMC and lipid distributions. GQI with tractography portrayed the locations of these components across the atherosclerotic vessel wall and differentiated multi-level organization of normal, pro-inflammatory cellular phenotypes, or thrombus. Moreover, the locations of CE were differentiated from cellular constituents by their higher restrictive diffusion properties, which permitted chemical confirmation of CE by high field voxel-guided CMRS. CONCLUSIONS: GQI with tractography is a new method for atherosclerosis imaging that defines a pathological architectural signature for the atheromatous plaque composed of distributed SMC, ECM, inflammatory cells, and thrombus and lipid. This provides a detailed transmural map of normal and inflamed vessel walls in the setting of atherosclerosis that has not been previously achieved using traditional CMR techniques. Although this is an ex-vivo study, detection of micro and mesoscale level vascular destabilization as enabled by GQI with tractography could increase the accuracy of diagnosis and assessment of treatment outcomes in individuals with atherosclerosis.


Assuntos
Aterosclerose , Placa Aterosclerótica , Trombose , Animais , Coelhos , Humanos , Valor Preditivo dos Testes , Placa Aterosclerótica/complicações , Placa Aterosclerótica/patologia , Espectroscopia de Ressonância Magnética , Lipídeos , Músculo Liso/patologia
2.
Int J Mol Sci ; 23(18)2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-36142437

RESUMO

Current imaging approaches used to monitor tumor progression can lack the ability to distinguish true progression from pseudoprogression. Simultaneous metabolic 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) positron emission tomography (PET) and magnetic resonance imaging (MRI) offers new opportunities to overcome this challenge by refining tumor identification and monitoring therapeutic responses to cancer immunotherapy. In the current work, spatial and quantitative analysis of tumor burden were performed using simultaneous [18F]FDG-PET/MRI to monitor therapeutic responses to a novel silicified cancer cell immunotherapy in a mouse model of disseminated serous epithelial ovarian cancer. Tumor progression was validated by bioluminescence imaging of luciferase expressing tumor cells, flow cytometric analysis of immune cells in the tumor microenvironment, and histopathology. While PET demonstrated the presence of metabolically active cancer cells through [18F]FDG uptake, MRI confirmed cancer-related accumulation of ascites and tissue anatomy. This approach provides complementary information on disease status without a confounding signal from treatment-induced inflammation. This work provides a possible roadmap to facilitate accurate monitoring of therapeutic responses to cancer immunotherapies.


Assuntos
Fluordesoxiglucose F18 , Neoplasias Ovarianas , Animais , Feminino , Glucose , Humanos , Imunoterapia , Imageamento por Ressonância Magnética/métodos , Camundongos , Neoplasias Ovarianas/diagnóstico por imagem , Neoplasias Ovarianas/terapia , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos , Microambiente Tumoral
3.
Calcif Tissue Int ; 109(1): 77-91, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33710382

RESUMO

Bone mineral carbonate content assessed by vibrational spectroscopy relates to fracture incidence, and mineral maturity/ crystallinity (MMC) relates to tissue age. As FT-IR and Raman spectroscopy become more widely used to characterize the chemical composition of bone in pre-clinical and translational studies, their bone mineral outcomes require improved validation to inform interpretation of spectroscopic data. In this study, our objectives were (1) to relate Raman and FT-IR carbonate:phosphate ratios calculated through direct integration of peaks to gold-standard analytical measures of carbonate content and underlying subband ratios; (2) to relate Raman and FT-IR MMC measures to gold-standard analytical measures of crystal size in chemical standards and native bone powders. Raman and FT-IR direct integration carbonate:phosphate ratios increased with carbonate content (Raman: p < 0.01, R2 = 0.87; FT-IR: p < 0.01, R2 = 0.96) and Raman was more sensitive to carbonate content than the FT-IR (Raman slope + 95% vs FT-IR slope, p < 0.01). MMC increased with crystal size for both Raman and FT-IR (Raman: p < 0.01, R2 = 0.76; FT-IR p < 0.01, R2 = 0.73) and FT-IR was more sensitive to crystal size than Raman (c-axis length: slope FT-IR MMC + 111% vs Raman MMC, p < 0.01). Additionally, FT-IR but not Raman spectroscopy detected differences in the relationship between MMC and crystal size of carbonated hydroxyapatite (CHA) vs poorly crystalline hydroxyapatites (HA) (slope CHA + 87% vs HA, p < 0.01). Combined, these results contribute to the ability of future studies to elucidate the relationships between carbonate content and fracture and provide insight to the strengths and limitations of FT-IR and Raman spectroscopy of native bone mineral.


Assuntos
Durapatita , Análise Espectral Raman , Carbonatos , Hidroxiapatitas , Espectroscopia de Infravermelho com Transformada de Fourier
4.
J Transl Med ; 18(1): 277, 2020 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-32641073

RESUMO

BACKGROUND: Brain aging is a major risk factor in the progression of cognitive diseases including Alzheimer's disease (AD) and vascular dementia. We investigated a mouse model of brain aging up to 24 months old (mo). METHODS: A high field (11.7T) MRI protocol was developed to characterize specific features of brain aging including the presence of cerebral microbleeds (CMBs), morphology of grey and white matter, and tissue diffusion properties. Mice were selected from age categories of either young (3 mo), middle-aged (18 mo), or old (24 mo) and fed normal chow over the duration of the study. Mice were imaged in vivo with multimodal MRI, including conventional T2-weighted (T2W) and T2*-weighted (T2*W) imaging, followed by ex vivo diffusion-weighted imaging (DWI) and T2*W MR-microscopy to enhance the detection of microstructural features. RESULTS: Structural changes observed in the mouse brain with aging included reduced cortical grey matter volume and enlargement of the brain ventricles. A remarkable age-related change in the brains was the development of CMBs found starting at 18 mo and increasing in total volume at 24 mo, primarily in the thalamus. CMBs presence was confirmed with high resolution ex vivo MRI and histology. DWI detected further brain tissue changes in the aged mice including reduced fractional anisotropy, increased radial diffusion, increased mean diffusion, and changes in the white matter fibers visualized by color-coded tractography, including around a large cortical CMB. CONCLUSIONS: The mouse is a valuable model of age-related vascular contributions to cognitive impairment and dementia (VCID). In composite, these methods and results reveal brain aging in older mice as a multifactorial process including CMBs and tissue diffusion alterations that can be well characterized by high field MRI.


Assuntos
Encéfalo , Hemorragia Cerebral , Animais , Encéfalo/diagnóstico por imagem , Hemorragia Cerebral/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética , Substância Cinzenta , Imageamento por Ressonância Magnética , Camundongos
5.
Calcif Tissue Int ; 106(3): 303-314, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31784772

RESUMO

Anti-resorptive and anabolic treatments can be used sequentially to treat osteoporosis, but their effects on bone composition are incompletely understood. Osteocytes may influence bone tissue composition with sequential therapies because bisphosphonates diffuse into the canalicular network and anabolic treatments increase osteocyte lacunar size. Cortical bone composition of osteopenic, ovariectomized (OVX) rats was compared to that of Sham-operated rats and OVX rats given monotherapy or sequential regimens of single approved anti-osteoporosis medications. Adult female Sprague-Dawley rats were OVX (N = 37) or Sham-OVXd (N = 6). After 2 months, seven groups of OVX rats were given three consecutive 3-month periods of treatment with vehicle (V), h-PTH (1-34) (P), alendronate (A), or raloxifene (R), using the following orders: VVV, PVV, RRR, RPR, AAA, AVA, and APA. Compositional properties around osteocyte lacunae of the left tibial cortex were assessed from Raman spectra in perilacunar and non-perilacunar bone matrix regions. Sequential treatments involving parathyroid hormone (PTH) caused lower mean collagen maturity relative to monotherapies. Mean mineral:matrix ratio was 2.2% greater, mean collagen maturity was 1.4% greater, and mean carbonate:phosphate ratio was 2.2% lower in the perilacunar than in the non-perilacunar bone matrix region (all P < 0.05). These data demonstrate cortical bone tissue composition differences around osteocytes caused by sequential treatment with anti-osteoporosis medications. We speculate that the region-specific differences demonstrate the ability of osteocytes to alter bone tissue composition adjacent to lacunae.


Assuntos
Alendronato/farmacologia , Conservadores da Densidade Óssea/farmacologia , Doenças Ósseas Metabólicas/tratamento farmacológico , Osso Cortical/efeitos dos fármacos , Cloridrato de Raloxifeno/farmacologia , Teriparatida/farmacologia , Alendronato/uso terapêutico , Animais , Conservadores da Densidade Óssea/uso terapêutico , Doenças Ósseas Metabólicas/metabolismo , Calcificação Fisiológica/efeitos dos fármacos , Colágeno/análise , Osso Cortical/química , Estrogênios/fisiologia , Feminino , Osteócitos/efeitos dos fármacos , Ovariectomia , Cloridrato de Raloxifeno/uso terapêutico , Ratos Sprague-Dawley , Teriparatida/uso terapêutico
6.
J Mol Cell Cardiol ; 129: 236-246, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30862451

RESUMO

Cardiac myosin binding protein-C (cMyBP-C) phosphorylation is essential for normal heart function and protects the heart from ischemia-reperfusion (I/R) injury. It is known that protein kinase-A (PKA)-mediated phosphorylation of cMyBP-C prevents I/R-dependent proteolysis, whereas dephosphorylation of cMyBP-C at PKA sites correlates with its degradation. While sites on cMyBP-C associated with phosphorylation and proteolysis co-localize, the mechanisms that link cMyBP-C phosphorylation and proteolysis during cardioprotection are not well understood. Therefore, we aimed to determine if abrogation of cMyBP-C proteolysis in association with calpain, a calcium-activated protease, confers cardioprotection during I/R injury. Calpain is activated in both human ischemic heart samples and ischemic mouse myocardium where cMyBP-C is dephosphorylated and undergoes proteolysis. Moreover, cMyBP-C is a substrate for calpain proteolysis and cleaved by calpain at residues 272-TSLAGAGRR-280, a domain termed as the calpain-target site (CTS). Cardiac-specific transgenic (Tg) mice in which the CTS motif was ablated were bred into a cMyBP-C null background. These Tg mice were conclusively shown to possess a normal basal structure and function by analysis of histology, electron microscopy, immunofluorescence microscopy, Q-space MRI of tissue architecture, echocardiography, and hemodynamics. However, the genetic ablation of the CTS motif conferred resistance to calpain-mediated proteolysis of cMyBP-C. Following I/R injury, the loss of the CTS reduced infarct size compared to non-transgenic controls. Collectively, these findings demonstrate the physiological significance of calpain-targeted cMyBP-C proteolysis and provide a rationale for studying inhibition of calpain-mediated proteolysis of cMyBP-C as a therapeutic target for cardioprotection.


Assuntos
Calpaína/metabolismo , Cardiotônicos/metabolismo , Proteínas de Transporte/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Miocárdio/metabolismo , Animais , Feminino , Testes de Função Cardíaca , Humanos , Masculino , Camundongos Transgênicos , Pessoa de Meia-Idade , Infarto do Miocárdio/metabolismo , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Fosforilação , Proteólise
7.
Med Care ; 57(11): 845-854, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31348124

RESUMO

BACKGROUND: Accountable Care Organizations (ACOs) have proliferated after the passage of the Affordable Care Act in 2010. Few longitudinal ACO studies with continuous enrollees exist and most are short term. OBJECTIVE: The objective of this study was to evaluate the long-term impact of a commercial ACO on health care spending, utilization, and quality outcomes among continuously enrolled members. RESEARCH DESIGN: Retrospective cohort study design and propensity-weighted difference-in-differences approach were applied to examine performance changes in 2 ACO cohorts relative to 1 non-ACO cohort during the commercial ACO implementation in 2010-2014. SUBJECTS: A total of 40,483 continuously enrolled members of a commercial health maintenance organization from 2008 to 2014. MEASURES: Cost, use, and quality metrics for various type of services in outpatient and inpatient settings. RESULTS: The ACO cohorts had (1) increased inpatient and outpatient total spending in the first 2 years of ACO operation, but insignificant differential changes for the latter 3 years; (2) decreased outpatient spending in the latter 2 years through reduced primary care visits and lowered spending on specialists, testing, and imaging; (3) no differential changes in inpatient hospital spending, utilization, and quality measures for most of the 5 years; (4) favorable results for several quality measures in preventive and diabetes care domains in at least one of the 5 years. CONCLUSIONS: The commercial ACO improved outpatient process quality measures modestly and slowed outpatient spending growth by the fourth year of operation, but had a negligible impact on inpatient hospital cost, use, and quality measures.


Assuntos
Organizações de Assistência Responsáveis/estatística & dados numéricos , Utilização de Instalações e Serviços/economia , Gastos em Saúde/estatística & dados numéricos , Aceitação pelo Paciente de Cuidados de Saúde/estatística & dados numéricos , Qualidade da Assistência à Saúde/estatística & dados numéricos , Implementação de Plano de Saúde , Humanos , Pontuação de Propensão , Estudos Retrospectivos , Fatores de Tempo , Estados Unidos
8.
Curr Osteoporos Rep ; 17(6): 455-464, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31713179

RESUMO

PURPOSE OF REVIEW: Individuals with type 1 and type 2 diabetes mellitus (T1DM, T2DM) have an increased risk of bone fracture compared to non-diabetic controls that is not explained by differences in BMD, BMI, or falls. Thus, bone tissue fracture resistance may be reduced in individuals with DM. The purpose of this review is to summarize work that analyzes the effects of T1DM and T2DM on bone tissue compositional and mechanical properties. RECENT FINDINGS: Studies of clinical T2DM specimens revealed increased mineralization and advanced glycation endproduct (AGE) concentrations and significant relationships between mechanical performance and composition of cancellous bone. Specifically, in femoral cancellous tissue, compressive stiffness and strength increased with mineral content; and post-yield properties decreased with AGE concentration. In addition, cortical resistance to in vivo indentation (bone material strength index) was lower in patients with T2DM vs. age-matched non-diabetic controls, and this resistance decreased with worsening glycemic control. Recent studies on patients with T1DM and history of a prior fragility fracture found greater mineral content and concentrations of AGEs in iliac trabecular bone and correspondingly stiffer, harder bone at the nanosacle. Recent observational data showed greater AGE and mineral content in surgically retrieved bone from patients with T2DM vs. non-DM controls, consistent with reduced bone remodeling. Limited data on human T1DM bone tissue also showed higher mineral and AGE content in patients with prior fragility fractures compared to non-DM and non-fracture controls.


Assuntos
Remodelação Óssea , Osso e Ossos/fisiopatologia , Diabetes Mellitus Tipo 1/fisiopatologia , Diabetes Mellitus Tipo 2/fisiopatologia , Animais , Fenômenos Biomecânicos , Glicemia/metabolismo , Densidade Óssea , Osso e Ossos/diagnóstico por imagem , Osso e Ossos/metabolismo , Osso Esponjoso/diagnóstico por imagem , Osso Esponjoso/metabolismo , Osso Esponjoso/fisiopatologia , Osso Cortical/diagnóstico por imagem , Osso Cortical/metabolismo , Osso Cortical/fisiopatologia , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/fisiopatologia , Diabetes Mellitus Tipo 1/epidemiologia , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/metabolismo , Fraturas Ósseas/epidemiologia , Produtos Finais de Glicação Avançada/metabolismo , Humanos
9.
J Transl Med ; 16(1): 215, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30068362

RESUMO

BACKGROUND: The globally rising obesity epidemic is associated with a broad spectrum of diseases including atherosclerosis and non-alcoholic fatty liver (NAFL) disease. In the past, research focused on the vasculature or liver, but chronic systemic effects and inter-organ communication may promote the development of NAFL. Here, we investigated the impact of confined vascular endothelial injury, which produces highly inflamed aortic plaques that are susceptible to rupture, on the progression of NAFL in cholesterol fed rabbits. METHODS: Aortic atherosclerotic inflammation (plaque Gd-enhancement), plaque size (vessel wall area), and composition, were measured with in vivo magnetic resonance imaging (MRI) in rabbits fed normal chow or a 1% cholesterol-enriched atherogenic diet. Liver fat was quantified with magnetic resonance spectroscopy (MRS) over 3 months. Blood biomarkers were monitored in the animals, with follow-up by histology. RESULTS: Cholesterol-fed rabbits with and without injury developed hypercholesterolemia, NAFL, and atherosclerotic plaques in the aorta. Compared with rabbits fed cholesterol diet alone, rabbits with injury and cholesterol diets exhibited larger, and more highly inflamed plaques by MRI (P < 0.05) and aggravated liver steatosis by MRS (P < 0.05). Moreover, after sacrifice, damaged (ballooning) hepatocytes and extensive liver fibrosis were observed by histology. Elevated plasma gamma-glutamyl transferase (GGT; P = 0.014) and the ratio of liver enzymes aspartate and alanine aminotransferases (AST/ALT; P = 0.033) indicated the progression of steatosis to non-alcoholic steatohepatitis (NASH). CONCLUSIONS: Localized regions of highly inflamed aortic atherosclerotic plaques in cholesterol-fed rabbits may contribute to progression of fatty liver disease to NASH with fibrosis.


Assuntos
Aterosclerose/complicações , Aterosclerose/diagnóstico por imagem , Colesterol na Dieta/administração & dosagem , Comportamento Alimentar , Imageamento por Ressonância Magnética , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/diagnóstico por imagem , Animais , Aorta Abdominal/patologia , Aterosclerose/sangue , Aterosclerose/patologia , Biomarcadores/sangue , Colágeno/metabolismo , Progressão da Doença , Feminino , Fibrose , Fígado/enzimologia , Fígado/patologia , Masculino , Hepatopatia Gordurosa não Alcoólica/patologia , Placa Aterosclerótica/sangue , Placa Aterosclerótica/diagnóstico por imagem , Placa Aterosclerótica/patologia , Coelhos , Análise Espectral , Trombose/diagnóstico por imagem , Triglicerídeos/metabolismo
10.
Biophys J ; 108(11): 2740-9, 2015 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-26039175

RESUMO

The multiscale attributes of mammalian muscle confer significant challenges for structural imaging in vivo. To achieve this, we employed a magnetic resonance method, termed "generalized Q-space imaging", that considers the effect of spatially distributed diffusion-weighted magnetic field gradients and diffusion sensitivities on the morphology of Q-space. This approach results in a subvoxel scaled probability distribution function whose shape correlates with local fiber orientation. The principal fiber populations identified within these probability distribution functions can then be associated by streamline methods to create multivoxel tractlike constructs that depict the macroscale orientation of myofiber arrays. We performed a simulation of Q-space input parameters, including magnetic field gradient strength and direction, diffusion sensitivity, and diffusional sampling to determine the optimal achievable fiber angle separation in the minimum scan time. We applied this approach to resolve intravoxel crossing myofiber arrays in the setting of the human tongue, an organ with anatomic complexity based on the presence of hierarchical arrays of intersecting myocytes. Using parameters defined by simulation, we imaged at 3T the fanlike configuration of the human genioglossus and the laterally positioned merging fibers of the styloglossus, inferior longitudinalis, chondroglossus, and verticalis. Comparative scans of the excised mouse tongue at 7T demonstrated similar midline and lateral crossing fiber patterns, whereas histological analysis confirmed the presence and distribution of these myofiber arrays at the microscopic scale. Our results demonstrate a magnetic resonance method for acquiring and displaying diffusional data that defines highly ordered myofiber patterns in architecturally complex tissue. Such patterns suggest inherent multiscale fiber organization and provide a basis for structure-function analyses in vivo and in model tissues.


Assuntos
Imageamento por Ressonância Magnética , Músculos/citologia , Animais , Difusão , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Camundongos , Língua
11.
J Appl Psychol ; 108(12): 2018-2039, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37498708

RESUMO

Organizational climate is arguably the most studied representation of the social context of organizations, having been examined as an antecedent, outcome, or boundary condition in virtually every domain of inquiry in the organizational sciences. Yet there is no commonly recognized, domain-independent theory that is used to explain why and how climates both form and affect behavior. Rather, there is a set of climate theories (and literatures) housed across a variety of divergent content domains. As a result, researchers who study climate in one domain are often unaware of climate advancements made in another. This lack of a theoretical lingua franca for climate limits our ability to understand what is known about climate and how climate research-whether domain-specific or domain-independent-can progress in a more cogent fashion. To resolve these fractures and unify climate scholarship, this article integrates existing theoretical perspectives of climate into a singular climate theory that summarizes and articulates domain-independent answers to the questions of why and how climates form and influence behavior in organizations. Using the individual drive to reduce uncertainty in meaningful social settings as the motivational mortar for this theoretical integration, we offer a needed reorientation to the field and illuminate a path forward for both future domain-specific and domain-independent climate advancements. (PsycInfo Database Record (c) 2023 APA, all rights reserved).


Assuntos
Cultura Organizacional , Humanos
12.
PLoS One ; 18(7): e0287825, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37418415

RESUMO

Individuals with type 2 diabetes mellitus (T2DM) have a higher fracture risk compared to those without T2DM despite having higher bone mineral density (BMD). Thus, T2DM may alter other aspects of resistance to fracture beyond BMD such as bone geometry, microarchitecture, and tissue material properties. We characterized the skeletal phenotype and assessed the effects of hyperglycemia on bone tissue mechanical and compositional properties in the TallyHO mouse model of early-onset T2DM using nanoindentation and Raman spectroscopy. Femurs and tibias were harvested from male TallyHO and C57Bl/6J mice at 26 weeks of age. The minimum moment of inertia assessed by micro-computed tomography was smaller (-26%) and cortical porosity was greater (+490%) in TallyHO femora compared to controls. In three-point bending tests to failure, the femoral ultimate moment and stiffness did not differ but post-yield displacement was lower (-35%) in the TallyHO mice relative to that in C57Bl/6J age-matched controls after adjusting for body mass. The cortical bone in the tibia of TallyHO mice was stiffer and harder, as indicated by greater mean tissue nanoindentation modulus (+22%) and hardness (+22%) compared to controls. Raman spectroscopic mineral:matrix ratio and crystallinity were greater in TallyHO tibiae than in C57Bl/6J tibiae (mineral:matrix +10%, p < 0.05; crystallinity +0.41%, p < 0.10). Our regression model indicated that greater values of crystallinity and collagen maturity were associated with reduced ductility observed in the femora of the TallyHO mice. The maintenance of structural stiffness and strength of TallyHO mouse femora despite reduced geometric resistance to bending could potentially be explained by increased tissue modulus and hardness, as observed at the tibia. Finally, with worsening glycemic control, tissue hardness and crystallinity increased, and bone ductility decreased in TallyHO mice. Our study suggests that these material factors may be sentinels of bone embrittlement in adolescents with T2DM.


Assuntos
Diabetes Mellitus Tipo 2 , Fraturas Ósseas , Camundongos , Masculino , Animais , Densidade Óssea/genética , Microtomografia por Raio-X , Dureza , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
13.
J Mech Behav Biomed Mater ; 145: 106034, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37494816

RESUMO

Microstructural and compositional changes that occur due to aging, pathological conditions, or pharmacological treatments alter cortical bone fracture resistance. However, the relative importance of these changes to the fracture resistance of cortical bone has not been quantified in detail. In this technical note, we developed an integrated experimental-computational framework utilizing human femoral cortical bone biopsies to advance the understanding of how fracture resistance of cortical bone is modulated due to modifications in its microstructure and material properties. Four human biopsy samples from individuals with varying fragility fracture history and osteoporosis treatment status were converted to finite element models incorporating specimen-specific material properties and were analyzed using fracture mechanics-based modeling. The results showed that cement line density and osteonal volume had a significant effect on crack volume. The removal of cement lines substantially increased the crack volume in the osteons and interstitial bone, representing straight crack growth, compared to models with cement lines due to the lack of crack deflection in the models without cement lines. Crack volume in the osteons and interstitial bone increased when mean elastic modulus and ultimate strength increased and mean fracture toughness decreased. Crack volume in the osteons and interstitial bone was reduced when material property heterogeneity was incorporated in the models. Although both the microstructure and the heterogeneity of the material properties of the cortical bone independently increased the fracture toughness, the relative contribution of the microstructure was more significant. The integrated experimental-computational framework developed here can identify the most critical microscale features of cortical bone modulated by pathological processes or pharmacological treatments that drive changes in fracture resistance and improve our understanding of the relative influence of microstructure and material properties on fracture resistance of cortical bone.


Assuntos
Fraturas Ósseas , Modelos Biológicos , Humanos , Análise de Elementos Finitos , Osso Cortical/patologia , Osso e Ossos/patologia , Fraturas Ósseas/patologia
14.
J Bone Miner Res ; 38(2): 261-277, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36478472

RESUMO

Individuals with type 2 diabetes mellitus (T2DM) have a greater risk of bone fracture compared with those with normal glucose tolerance (NGT). In contrast, individuals with impaired glucose tolerance (IGT) have a lower or similar risk of fracture. Our objective was to understand how progressive glycemic derangement affects advanced glycation endproduct (AGE) content, composition, and mechanical properties of iliac bone from postmenopausal women with NGT (n = 35, age = 65 ± 7 years, HbA1c = 5.8% ± 0.3%), IGT (n = 26, age = 64 ± 5 years, HbA1c = 6.0% ± 0.4%), and T2DM on insulin (n = 25, age = 64 ± 6 years, HbA1c = 9.1% ± 2.2%). AGEs were assessed in all samples using high-performance liquid chromatography to measure pentosidine and in NGT/T2DM samples using multiphoton microscopy to spatially resolve the density of fluorescent AGEs (fAGEs). A subset of samples (n = 14 NGT, n = 14 T2DM) was analyzed with nanoindentation and Raman microscopy. Bone tissue from the T2DM group had greater concentrations of (i) pentosidine versus IGT (cortical +24%, p = 0.087; trabecular +35%, p = 0.007) and versus NGT (cortical +40%, p = 0.003; trabecular +35%, p = 0.004) and (ii) fAGE cross-link density versus NGT (cortical +71%, p < 0.001; trabecular +44%, p < 0.001). Bone pentosidine content in the IGT group was lower than in the T2DM group and did not differ from the NGT group, indicating that the greater AGE content observed in T2DM occurs with progressive diabetes. Individuals with T2DM on metformin had lower cortical bone pentosidine compared with individuals not on metformin (-35%, p = 0.017). Cortical bone from the T2DM group was stiffer (+9%, p = 0.021) and harder (+8%, p = 0.039) versus the NGT group. Bone tissue AGEs, which embrittle bone, increased with worsening glycemic control assessed by HbA1c (Pen: R2  = 0.28, p < 0.001; fAGE density: R2  = 0.30, p < 0.001). These relationships suggest a potential mechanism by which bone fragility may increase despite greater tissue stiffness and hardness in individuals with T2DM; our results suggest that it occurs in the transition from IGT to overt T2DM. © 2022 American Society for Bone and Mineral Research (ASBMR).


Assuntos
Diabetes Mellitus Tipo 2 , Fraturas Ósseas , Intolerância à Glucose , Metformina , Humanos , Feminino , Pessoa de Meia-Idade , Idoso , Diabetes Mellitus Tipo 2/complicações , Insulina , Hemoglobinas Glicadas , Ílio , Dureza , Pós-Menopausa , Glucose , Glicemia
15.
J Neurotrauma ; 40(13-14): 1481-1494, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36869619

RESUMO

Abstract Traumatic brain injury (TBI) continues to be a major cause of death and disability worldwide. This study assessed the effectiveness of non-invasive vagus nerve stimulation (nVNS) in reducing brain lesion volume and improving neurobehavioral performance in a rat model of TBI. Animals were randomized into three experimental groups: (1) TBI with sham stimulation treatment (Control), (2) TBI treated with five lower doses (2-min) nVNS, and (3) TBI treated with five higher doses (2 × 2-min) nVNS. We used the gammaCore nVNS device to deliver stimulations. Magnetic resonance imaging studies were performed 1 and 7 days post-injury to confirm lesion volume. We observed smaller brain lesion volume in the lower dose nVNS group compared with the control group on days 1 and 7. The lesion volume for the higher dose nVNS group was significantly smaller than either the lower dose nVNS or the control groups on days 1 and 7 post-injury. The apparent diffusion coefficient differences between the ipsilateral and contralateral hemispheres on day 1 were significantly smaller for the higher dose (2 × 2 min) nVNS group than for the control group. Voxel-based morphometry analysis revealed an increase in the ipsilateral cortical volume in the control group caused by tissue deformation and swelling. On day 1, these abnormal volume changes were 13% and 55% smaller in the lower dose and higher dose nVNS groups, respectively, compared with the control group. By day 7, nVNS dampened cortical volume loss by 35% and 89% in the lower dose and higher dose nVNS groups, respectively, compared with the control group. Rotarod, beam walking, and anxiety performances were significantly improved in the higher-dose nVNS group on day 1 compared with the control group. The anxiety indices were also improved on day 7 post-injury compared with the control and the lower-dose nVNS groups. In conclusion, the higher dose nVNS (five 2 × 2-min stimulations) reduced brain lesion volume to a level that further refined the role of nVNS therapy for the acute treatment of TBI. Should nVNS prove effective in additional pre-clinical TBI models and later in clinical settings, it would have an enormous impact on the clinical practice of TBI in both civilian and military settings, as it can easily be adopted into routine clinical practice.


Assuntos
Lesões Encefálicas Traumáticas , Estimulação do Nervo Vago , Ratos , Animais , Estimulação do Nervo Vago/métodos , Método Duplo-Cego , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Lesões Encefálicas Traumáticas/terapia , Encéfalo/diagnóstico por imagem
16.
Small ; 8(19): 3016-27, 2012 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-22777831

RESUMO

Bacterial infections caused by antibiotic-resistant strains are of deep concern due to an increasing prevalence, and are a major cause of morbidity in the United States of America. In particular, medical device failures, and thus human lives, are greatly impacted by infections, where the treatments required are further complicated by the tendency of pathogenic bacteria, such as Staphylococcus aureus, to produce antibiotic resistant biofilms. In this study, a panel of relevant antibiotics used clinically including penicillin, oxacillin, gentamicin, streptomycin, and vancomycin are tested, and although antibiotics are effective against free-floating planktonic S. aureus, either no change in biofilm function is observed, or, more frequently, biofilm function is enhanced. As an alternative, superparamagnetic iron oxide nanoparticles (SPION) are synthesized through a two-step process with dimercaptosuccinic acid as a chelator, followed by the conjugation of metals including iron, zinc, and silver; thus, the antibacterial properties of the metals are coupled to the superparamagnetic properties of SPION. SPION might be the ideal antibacterial treatment, with a superior ability to decrease multiple bacterial functions, target infections in a magnetic field, and had activity better than antibiotics or metal salts alone, as is required for the treatment of medical device infections for which no treatment exists today.


Assuntos
Antibacterianos/farmacologia , Biofilmes , Compostos Férricos/química , Compostos Ferrosos/química , Nanopartículas/química , Quelantes/química , Gentamicinas/farmacologia , Testes de Sensibilidade Microbiana , Oxacilina/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Succímero/química , Vancomicina/farmacologia
17.
Transl Biophotonics ; 4(4)2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38283396

RESUMO

Intravascular photoacoustic (IVPA) imaging is a promising modality for quantitative assessment of lipid-laden atherosclerotic plaques. Yet, survival IVPA imaging of the same plaque in the same animal is not demonstrated. Here, using a sheathed IVUS/PA catheter of 0.9 mm in diameter, we demonstrate MRI-guided survival IVPA imaging of same plaque in an aorta of a well-established rabbit model mimicking atherosclerosis in human patients. The IVUS/PA results were confirmed by histology. These advances open the opportunity to evaluate the effectiveness of a therapy that aims to reduce the size of atherosclerotic plaques and demonstrates the potential of translating the IVPA catheter into clinic for detection of lipid-rich plaques that are at high risk for thrombosis.

18.
Cancer Res Commun ; 2(11): 1436-1448, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36407834

RESUMO

Melanoma brain metastasis (MBM) is linked to poor prognosis and low overall survival. We hypothesized that melanoma circulating tumor cells (CTCs) possess a gene signature significantly expressed and associated with MBM. Employing a multi-pronged approach, we provide first-time evidence identifying a common CTC gene signature for ribosomal protein large/small subunits (RPL/RPS) which associate with MBM onset and progression. Experimental strategies involved capturing, transcriptional profiling and interrogating CTCs, either directly isolated from blood of melanoma patients at distinct stages of MBM progression or from CTC-driven MBM in experimental animals. Second, we developed the first Magnetic Resonance Imaging (MRI) CTC-derived MBM xenograft model (MRI-MBM CDX) to discriminate MBM spatial and temporal growth, recreating MBM clinical presentation and progression. Third, we performed the comprehensive transcriptional profiling of MRI-MBM CDXs, along with longitudinal monitoring of CTCs from CDXs possessing/not possessing MBM. Our findings suggest that enhanced ribosomal protein content/ribogenesis may contribute to MBM onset. Since ribosome modifications drive tumor progression and metastatic development by remodeling CTC translational events, overexpression of the CTC RPL/RPS gene signature could be implicated in MBM development. Collectively, this study provides important insights for relevance of the CTC RPL/RPS gene signature in MBM, and identify potential targets for therapeutic intervention to improve patient care for melanoma patients diagnosed with or at high-risk of developing MBM.


Assuntos
Neoplasias Encefálicas , Melanoma , Células Neoplásicas Circulantes , Animais , Humanos , Melanoma/genética , Células Neoplásicas Circulantes/metabolismo , Neoplasias Encefálicas/genética , Proteínas Ribossômicas/genética
19.
Nanotechnology ; 22(29): 295102, 2011 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-21673387

RESUMO

Bacterial infection of in-dwelling medical devices is a growing problem that cannot be treated by traditional antibiotics due to the increasing prevalence of antimicrobial resistance and biofilm formation. Here, due to changes in surface parameters, it is proposed that bacterial adhesion can be prevented through nanosurface modifications of the medical device alone. Toward this goal, titanium was created to possess nanotubular surface topographies of highly controlled diameters of 20, 40, 60, or 80 nm, sometimes followed by heat treatment to control chemistry and crystallinity, through a novel anodization process. For the first time it was found that through the control of Ti surface parameters including chemistry, crystallinity, nanotube size, and hydrophilicity, significantly changed responses of both Staphylococcus epidermidis and Staphylococcus aureus (pathogens relevant for orthopaedic and other medical device related infections) were measured. Specifically, heat treatment of 80 nm diameter titanium tubes produced the most robust antimicrobial effect of all surface treatment parameters tested. This study provides the first step toward understanding the surface properties of nano-structured titanium that improve tissue growth (as has been previously observed with nanotubular titanium), while simultaneously reducing infection without the use of pharmaceutical drugs.


Assuntos
Antibacterianos/farmacologia , Nanotubos/química , Tamanho da Partícula , Titânio/química , Eletrodos , Interações Hidrofóbicas e Hidrofílicas/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Microscopia de Força Atômica , Nanotubos/ultraestrutura , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus epidermidis/efeitos dos fármacos , Propriedades de Superfície/efeitos dos fármacos , Difração de Raios X
20.
J Occup Health Psychol ; 26(6): 564-581, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34292017

RESUMO

A challenge for leadership and health/well-being research and applications relying on web-based data collection is false identities-cases where participants are not members of the targeted population. To address this challenge, we investigated the effectiveness of a new approach consisting of using internet protocol (IP) address analysis to enhance the validity of web-based research involving constructs relevant in leadership and health/well-being research (e.g., leader-member exchange [LMX], physical [health] symptoms, job satisfaction, workplace stressors, and task performance). Specifically, we used study participants' IP addresses to gather information on their IP threat scores and internet service providers (ISPs). We then used IP threat scores and ISPs to distinguish between two types of respondents: (a) targeted and (b) nontargeted. Results of an empirical study involving nearly 1,000 participants showed that using information obtained from IP addresses to distinguish targeted from nontargeted participants resulted in data with fewer missed instructed-response items, higher within-person reliability, and a higher completion rate of open-ended questions. Comparing the entire sample against targeted participants showed different mean scores, factor structures, scale reliability estimates, and estimated size of substantive relationships among constructs. Differences in scale reliability and construct mean scores remained even after implementing existing procedures typically used to compare web-based and nonweb-based respondents, providing evidence that our proposed approach offers clear benefits not found in data-cleaning methodologies currently in use. Finally, we offer best-practice recommendations in the form of a decision-making tree for improving the validity of future web-based surveys and research in leadership and health/well-being and other domains. (PsycInfo Database Record (c) 2022 APA, all rights reserved).


Assuntos
Satisfação no Emprego , Liderança , Humanos , Internet , Reprodutibilidade dos Testes , Inquéritos e Questionários
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA