Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Diagnostics (Basel) ; 13(9)2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37174933

RESUMO

Airway management is a common and critical procedure in acute settings, such as the Emergency Department (ED) or Intensive Care Unit (ICU) of hospitals. Many of the traditional physical examination methods have limitations in airway assessment. Point-of-care ultrasound (POCUS) has emerged as a promising tool for airway management due to its familiarity, accessibility, safety, and non-invasive nature. It can assist physicians in identifying relevant anatomy of the upper airway with objective measurements of airway parameters, and it can guide airway interventions with dynamic real-time images. To date, ultrasound has been considered highly accurate for assessment of the difficult airway, confirmation of proper endotracheal intubation, prediction of post-extubation laryngeal edema, and preparation for cricothyrotomy by identifying the cricothyroid membrane. This review aims to provide a comprehensive overview of the key evidence on the use of ultrasound in airway management. Databases including PubMed and Embase were systematically searched. A search strategy using a combination of the term "ultrasound" combined with several search terms, i.e., "probe", "anatomy", "difficult airway", "endotracheal intubation", "laryngeal edema", and "cricothyrotomy" was performed. In conclusion, POCUS is a valuable tool with multiple applications ranging from pre- and post-intubation management. Clinicians should consider using POCUS in conjunction with traditional exam techniques to manage the airway more efficiently in the acute setting.

2.
Ecol Evol ; 10(11): 4867-4875, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32551067

RESUMO

Spatial distribution and habitat selection are integral to the study of animal ecology. Habitat selection may optimize the fitness of individuals. Hutchinsonian niche theory posits the fundamental niche of species would support the persistence or growth of populations. Although niche-based species distribution models (SDMs) and habitat suitability models (HSMs) such as maximum entropy (Maxent) have demonstrated fair to excellent predictive power, few studies have linked the prediction of HSMs to demographic rates. We aimed to test the prediction of Hutchinsonian niche theory that habitat suitability (i.e., likelihood of occurrence) would be positively related to survival of American beaver (Castor canadensis), a North American semi-aquatic, herbivorous, habitat generalist. We also tested the prediction of ideal free distribution that animal fitness, or its surrogate, is independent of habitat suitability at the equilibrium. We estimated beaver monthly survival probability using the Barker model and radio telemetry data collected in northern Alabama, United States from January 2011 to April 2012. A habitat suitability map was generated with Maxent for the entire study site using landscape variables derived from the 2011 National Land Cover Database (30-m resolution). We found an inverse relationship between habitat suitability index and beaver survival, contradicting the predictions of niche theory and ideal free distribution. Furthermore, four landscape variables selected by American beaver did not predict survival. The beaver population on our study site has been established for 20 or more years and, subsequently, may be approaching or have reached the carrying capacity. Maxent-predicted increases in habitat use and subsequent intraspecific competition may have reduced beaver survival. Habitat suitability-fitness relationships may be complex and, in part, contingent upon local animal abundance. Future studies of mechanistic SDMs incorporating local abundance and demographic rates are needed.

3.
J Chem Ecol ; 35(12): 1461-70, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20013037

RESUMO

Four repellents representing different modes of action (neophobia, irritation, conditioned aversion, and flavor modification) were tested with captive white-tailed deer in a series of two-choice tests. Two diets differing significantly in energy content were employed in choice tests so that incentive to consume repellent-treated diets varied according to which diet was treated. When the high-energy diet was treated with repellents, only blood (flavor modification) and capsaicin (irritation) proved highly effective. Rapid habituation to the odor of meat and bone meal (neophobia) presented in a sachet limited its effectiveness as a repellent under conditions with a high feeding motivation. Thiram, a stimulus used to condition aversions, was not strongly avoided in these trials, that included only limited exposures to the repellent. These data support previous studies indicating that habituation to odor limits the effectiveness of repellents that are not applied directly to food, while topically-applied irritants and animal-based products produce significant avoidance.


Assuntos
Cervos/fisiologia , Comportamento Alimentar , Ração Animal , Animais , Aprendizagem da Esquiva , Capsaicina/metabolismo , Fungicidas Industriais/metabolismo , Odorantes , Tiram/metabolismo
4.
Curr Zool ; 63(6): 703-710, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29492032

RESUMO

Animal habitat selection, among other ecological phenomena, is spatially scale dependent. Habitat selection by American beavers Castor canadensis (hereafter, beaver) has been studied at singular spatial scales, but to date no research addresses multi-scale selection. Our objectives were to determine if beaver habitat selection was specialized to semiaquatic habitats and if variables explaining habitat selection are consistent between landscape and fine spatial scales. We built maximum entropy (MaxEnt) models to relate landscape-scale presence-only data to landscape variables, and used generalized linear mixed models to evaluate fine spatial scale habitat selection using global positioning system (GPS) relocation data. Explanatory variables between the landscape and fine spatial scale were compared for consistency. Our findings suggested that beaver habitat selection at coarse (study area) and fine (within home range) scales was congruent, and was influenced by increasing amounts of woody wetland edge density and shrub edge density, and decreasing amounts of open water edge density. Habitat suitability at the landscape scale also increased with decreasing amounts of grass frequency. As territorial, central-place foragers, beavers likely trade-off open water edge density (i.e., smaller non-forested wetlands or lodges closer to banks) for defense and shorter distances to forage and obtain construction material. Woody plants along edges and expanses of open water for predator avoidance may limit beaver fitness and subsequently determine beaver habitat selection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA