Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Nutrients ; 16(2)2024 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-38257090

RESUMO

Menopause causes a reduction in estradiol (E2) and may be associated with neuromuscular degeneration. Compared to pre-menopausal (PRE-M) women, this study sought to determine dietary protein intake and whether lower levels of circulating E2 in post-menopausal women (POST-M) were occurring alongside increased levels of biomarkers of axonal and neuromuscular junction degeneration (NMJ), inflammation, muscle protein degradation, and reduced indices of muscle quality and performance. Employing a cross-sectional design, PRE-M (n = 6) and POST-M (n = 6) dietary analysis data were collected and participants then donated a blood and urine sample followed by assessments for body composition, motor unit activation, and muscle performance. Independent group t-tests were performed to determine differences between groups (p ≤ 0.05). In POST-M women, E2, motor unit activity, muscle quality, and muscle performance were significantly less than those for PRE-M women; however, the levels of c-terminal fragment of agrin, tumor necrosis factor-α, and urinary titin were significantly greater (p < 0.05). POST-M women were also shown to be ingesting fewer total calories and less protein than PRE-M (p < 0.05). Reduced E2 and dietary protein intake in POST-M women occurs in conjunction with increased levels of biomarkers of NMJ degradation, inflammation, and muscle proteolysis, which may be associated with reduced motor unit activation and muscle quality.


Assuntos
Proteínas Alimentares , Pós-Menopausa , Feminino , Humanos , Proteólise , Estudos Transversais , Músculos , Biomarcadores
2.
bioRxiv ; 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38826385

RESUMO

We sought to examine how resistance exercise (RE), cycling exercise, and disuse atrophy affect myosin heavy chain (MyHC) protein fragmentation in humans. In the first study (1boutRE), younger adult men (n=8; 5±2 years of RE experience) performed a lower body RE bout with vastus lateralis (VL) biopsies obtained immediately before, 3-, and 6-hours post-exercise. In the second study (10weekRT), VL biopsies were obtained in untrained younger adults (n=36, 18 men and 18 women) before and 24 hours (24h) after their first/naïve RE bout. These participants also engaged in 10 weeks (24 sessions) of resistance training and donated VL biopsies before and 24h after their last RE bout. VL biopsies were also examined from a third acute cycling study (n=7) and a fourth study involving two weeks of leg immobilization (n=20, 15 men and 5 women) to determine how MyHC fragmentation was affected. In the 1boutRE study, the fragmentation of all MyHC isoforms (MyHCTotal) increased 3 hours post-RE (~ +200%, p=0.018) and returned to pre-exercise levels by 6 hours post-RE. Immunoprecipitation of MyHCTotal revealed ubiquitination levels remained unaffected at the 3- and 6-hour post-RE time points. Interestingly, a greater increase in magnitude for MyHC type IIa versus I isoform fragmentation occurred 3-hours post-RE (8.6±6.3-fold versus 2.1±0.7-fold, p=0.018). In all 10weekRT participants, the first/naïve and last RE bouts increased MyHCTotal fragmentation 24h post-RE (+65% and +36%, respectively; p<0.001); however, the last RE bout response was attenuated compared to the first bout (p=0.045). The first/naïve bout response was significantly elevated in females only (p<0.001), albeit females also demonstrated a last bout attenuation response (p=0.002). Although an acute cycling bout did not alter MyHCTotal fragmentation, ~8% VL atrophy with two weeks of leg immobilization led to robust MyHCTotal fragmentation (+108%, p<0.001), and no sex-based differences were observed. In summary, RE and disuse atrophy increase MyHC protein fragmentation. A dampened response with 10 weeks of resistance training, and more refined responses in well-trained men, suggest this is an adaptive process. Given the null polyubiquitination IP findings, more research is needed to determine how MyHC fragments are processed. Moreover, further research is needed to determine how aging and disease-associated muscle atrophy affect these outcomes, and whether MyHC fragmentation is a viable surrogate for muscle protein turnover rates.

3.
Phys Sportsmed ; 39(2): 27-40, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21673483

RESUMO

OBJECTIVE: To determine whether sedentary obese women with elevated levels of homeostatic model assessment (HOMA) insulin resistance (ie, > 3.5) experience greater benefits from an exercise + higher-carbohydrate (HC) or carbohydrate-restricted weight loss program than women with lower HOMA levels. METHODS: 221 women (age, 46.5 ± 12 years; body weight, 90.3 ± 16 kg; body mass index, 33.8 ± 5 kg/m(2)) participated in a 10-week supervised exercise and weight loss program. The fitness program involved 30 minutes of circuit-style resistance training 3 days per week. Subjects were prescribed low-fat (30%) isoenergetic diets that consisted of 1200 kcals per day for 1 week (phase 1) and 1600 kcals per day for 9 weeks (phase 2) with HC or higher protein (HP). Fasting blood samples, body composition, anthropometry, resting energy expenditure, and fitness measurements were obtained at 0 and 10 weeks. Subjects were retrospectively stratified into lower (LH) or higher (HH) than 3.5 HOMA groups. Data were analyzed by multivariate analysis of variance with repeated measures and are presented as mean ± standard deviation changes from baseline. RESULTS: Baseline HOMA levels in the LH group were significantly lower than those in the HH group (LH, 0.6 ± 0.7; HH, 6.3 ± 3.4; P = 0.001). Diet and training significantly decreased body weight (-3.5 ± 3 kg), fat mass (-2.7 ± 3 kg), blood glucose (-3%), total cholesterol (-4.5%), low-density lipoproteins (-5%), triglycerides (-5.9%), systolic blood pressure (-2.6%), and waist circumference (-3.7%), while increasing peak aerobic capacity (7.3%). Subjects in the HP group experienced greater weight loss (-4.4 ± 3.6 kg vs -2.6 ± 2.9 kg), fat loss (-3.4 ± 2.7 kg vs -1.7 ± 2.0 kg), reductions in serum glucose (3% vs 2%), and decreases in serum leptin levels (-30.8% vs -10.8%) than those in the HC group. Participants in the HH (-14.1%) and HP-HH (-21.6%) groups observed the greatest reduction in serum blood glucose. CONCLUSION: A carbohydrate-restricted diet promoted more favorable changes in weight loss, fat loss, and markers of health in obese women who initiated an exercise program compared with a diet higher in carbohydrate. Additionally, obese women who initiated training and dieting with higher HOMA levels experienced greater reductions in blood glucose following an HP diet.


Assuntos
Biomarcadores/sangue , Composição Corporal/fisiologia , Dieta com Restrição de Carboidratos , Resistência à Insulina , Obesidade/reabilitação , Treinamento Resistido/métodos , Redução de Peso/fisiologia , Adolescente , Adulto , Idoso , Glicemia/metabolismo , Índice de Massa Corporal , Exercício Físico/fisiologia , Feminino , Humanos , Pessoa de Meia-Idade , Obesidade/sangue , Obesidade/dietoterapia , Adulto Jovem
4.
Nutrients ; 12(3)2020 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-32156010

RESUMO

Vitamin D and calcium supplementation have been posited to improve body composition and different formulations of calcium may impact bioavailability. However, data are lacking regarding the combinatorial effects of exercise, diet, and calcium and/or vitamin D supplementation on body composition changes in post-menopausal women. Herein, 128 post-menopausal women (51.3 ± 4.5 years, 36.4 ± 5.7 kg/m2, 46.2 ± 4.5% fat) were assigned to diet and supplement groups while participating in a supervised circuit-style resistance-training program (3 d/week) over a 14-week period. Diet groups included: (1) normal diet (CTL), (2) a low-calorie, higher protein diet (LCHP; 1600 kcal/day, 15% carbohydrates, 55% protein, 30% fat), and (3) a low-calorie, higher carbohydrate diet (LCHC; 1600 kcal/day, 55% carbohydrates, 15% protein, 30% fat). Supplement groups consisted of: (1) maltodextrin (PLA), (2) 800 mg/day of calcium carbonate (Ca), and (3) 800 mg/day of calcium citrate and malate and 400 IU/day of vitamin D (Ca+D). Fasting blood samples, body composition, resting energy expenditure, aerobic capacity, muscular strength and endurance measures were assessed. Data were analyzed by mixed factorial ANOVA with repeated measures and presented as mean change from baseline [95% CI]. Exercise training promoted significant improvements in strength, peak aerobic capacity, and blood lipids. Dieting resulted in greater losses of body mass (CTL -0.4 ± 2.4; LCHC -5.1 ± 4.2; LCHP -3.8 ± 4.2 kg) and fat mass (CTL -1.4 ± 1.8; LCHC -3.7 ± 3.7; LCHP -3.4 ± 3.4 kg). When compared to LCHC-PLA, the LCHC + Ca combination led to greater losses in body mass (PLA -4.1 [-6.1, -2.1], Ca -6.4 [-8.1, -4.7], Ca+D -4.4 [-6.4, -2.5] kg). In comparison to LCHC-Ca, the LCHC-Ca+D led to an improved maintenance of fat-free mass (PLA -0.3 [-1.4, 0.7], Ca -1.4 [-2.3, -0.5], Ca+D 0.4 [-0.6, 1.5] kg) and a greater loss of body fat (PLA -2.3 [-3.4, -1.1], Ca -1.3 [-2.3, -0.3], Ca+D -3.6 [-4.8, -2.5]%). Alternatively, no significant differences in weight loss or body composition resulted when adding Ca or Ca+D to the LCHP regimen in comparison to when PLA was added to the LCHP diet. When combined with an energy-restricted, higher carbohydrate diet, adding 800 mg of Ca carbonate stimulated greater body mass loss compared to when a PLA was added. Alternatively, adding Ca+D to the LCHC diet promoted greater% fat changes and attenuation of fat-free mass loss. Our results expand upon current literature regarding the impact of calcium supplementation with dieting and regular exercise. This data highlights that different forms of calcium in combination with an energy restricted, higher carbohydrate diet may trigger changes in body mass or body composition while no impact of calcium supplementation was observed when participants followed an energy restricted, higher protein diet.


Assuntos
Composição Corporal , Cálcio/administração & dosagem , Restrição Calórica , Suplementos Nutricionais , Exercício Físico/fisiologia , Fenômenos Fisiológicos da Nutrição/fisiologia , Pós-Menopausa/fisiologia , Vitamina D/administração & dosagem , Adulto , Índice de Massa Corporal , Carboidratos da Dieta/administração & dosagem , Feminino , Humanos , Pessoa de Meia-Idade , Treinamento Resistido , Fatores de Tempo
5.
J Strength Cond Res ; 23(8): 2179-87, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19826309

RESUMO

A single bout of high-intensity resistance exercise is capable of activating the expression of various genes in skeletal muscle involved in hypertrophy such as myosin heavy chain (MHC) isoforms, myogenic regulatory factors (MRFs), and growth factors. However, the specific role exercise intensity plays on the expression of these genes is not well defined. The purpose of this study was to investigate the effects of exercise intensity on MHC (type I, IIA, IIX), MRF (Myo-D, myogenin, MRF-4, myf5), and growth factor (insulin-like growth factor [IGF]-1, IGF-1 receptor [IGF-R1], mechano-growth factor [MGF]) mRNA expression. Thirteen male participants (21.5 +/- 2.9 years, 86.1 +/- 19.5 kg, 69.7 +/- 2.7 in.) completed bouts of resistance exercise involving 4 sets of 18-20 repetitions with 60-65% 1 repetition maximum (1RM) and 4 sets of 8-10 repetitions with 80-85% 1RM. Vastus lateralis biopsies were obtained immediately before exercise, and at 30 minutes, 2 hours, and 6 hours after each bout. The levels of mRNA expression were determined using real-time polymerase chain reaction. Data were analyzed using 2 x 4 multivariate analysis of variance (p

Assuntos
Biomarcadores/metabolismo , Desenvolvimento Muscular/fisiologia , Músculo Esquelético/metabolismo , RNA Mensageiro/metabolismo , Treinamento Resistido/métodos , Análise de Variância , Biópsia , Estudos Cross-Over , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Masculino , Desenvolvimento Muscular/genética , Fatores de Regulação Miogênica/genética , Fatores de Regulação Miogênica/metabolismo , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Miostatina/genética , Miostatina/metabolismo , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Tempo , Regulação para Cima , Adulto Jovem
6.
Appl Physiol Nutr Metab ; 41(3): 249-54, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26842665

RESUMO

We examined if 8 weeks of whey protein (WP) supplementation improved body composition and performance measures in NCAA Division III female basketball players. Subjects were assigned to consume 24 g WP (n = 8; age, 20 ± 2 years; height, 170 ± 6 cm; weight, 66.0 ± 3.1 kg) or 24 g of maltodextrin (MD) (n = 6; age, 21 ± 3 years; height, 169 ± 6 cm; weight, 68.2 ± 7.6 kg) immediately prior to and following training (4 days/week anaerobic and resistance training) for 8 weeks. Prior to (T1) and 8 weeks following supplementation (T2), subjects underwent dual X-ray absorptiometry body composition assessment as well as performance tests. The WP group gained lean mass from T1 to T2 (+1.4 kg, p = 0.003) whereas the MD group trended to gain lean mass (+0.4 kg, p = 0.095). The WP group also lost fat mass from T1 to T2 (-1.0 kg, p = 0.003) whereas the MD group did not (-0.5 kg, p = 0.41). The WP group presented greater gains in 1-repetition maximum (1RM) bench press (+4.9 kg) compared with the MD group (+2.3 kg) (p < 0.05). Moreover, the WP group improved agility from T1 to T2 (p = 0.001) whereas the MD group did not (p = 0.38). Both groups equally increased leg press 1RM, vertical jump, and broad jump performances. This study demonstrates that 8 weeks of WP supplementation improves body composition and select performance variables in previously trained female athletes.


Assuntos
Desempenho Atlético , Basquetebol , Composição Corporal , Suplementos Nutricionais , Contração Muscular , Músculo Esquelético/fisiologia , Treinamento Resistido , Proteínas do Soro do Leite/administração & dosagem , Absorciometria de Fóton , Adiposidade , Adolescente , Método Duplo-Cego , Teste de Esforço , Feminino , Humanos , Força Muscular , Resistência Física , Fatores de Tempo , Resultado do Tratamento , Adulto Jovem
7.
Med Sci Sports Exerc ; 36(9): 1499-506, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15354030

RESUMO

PURPOSE: Increased serum testosterone (TST) occurs in response to resistance exercise and is associated with increased muscle mass. However, the effects of elevated TST and sequential resistance exercise bouts on androgen receptor (AR) expression in humans are not well known. This study examined three sequential bouts of heavy-resistance exercise on serum total TST, sex hormone-binding globulin (SHBG) and free androgen index (FAI), skeletal muscle AR mRNA and protein expression, and myofibrillar protein content. METHODS: Eighteen untrained males were randomly assigned to either a resistance-training [RST (N = 9)] or control group [CON (N = 9)]. RST performed three lower-body resistance exercise bouts, each separated by 48 h. At each exercise bout, RST performed three sets of 8-10 repetitions at 75-80% one-repetition maximum using the squat, leg press, and leg extension exercises, respectively, whereas CON performed no resistance exercise. Muscle biopsies were obtained immediately before the first exercise bout and 48 h after each of the three bouts, whereas blood samples were obtained immediately before, immediately after, and 30 min after each bout. Data were analyzed with two-way ANOVA and bivariate correlations. RESULTS: Serum TST and FAI were significantly increased after each exercise bout (P < 0.05); however, there were no significant changes for SHBG. AR mRNA and protein were significantly increased (P < 0.05) after the second and third exercise bouts, respectively, and were significantly correlated to TST and FAI (P < 0.05). Myofibrillar protein increased after the third bout (P < 0.05). CONCLUSIONS: Three sequential bouts of heavy resistance exercise increases serum TST and are effective at up-regulating AR mRNA and protein expression that appears to correspond to subsequent increases in myofibrillar protein.


Assuntos
Receptores Androgênicos/metabolismo , Levantamento de Peso , Adulto , Androgênios/sangue , Primers do DNA , DNA Complementar , Humanos , Masculino , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores Androgênicos/genética , Globulina de Ligação a Hormônio Sexual/metabolismo , Testosterona/sangue , Estados Unidos
8.
Med Sci Sports Exerc ; 35(12): 2023-31, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14652497

RESUMO

INTRODUCTION/PURPOSE: Eccentric exercise causes muscle proteolysis that may be attenuated with repeated exercise. Therefore, this study determined the effect of repeated bouts of eccentric exercise on ubiquitin (UBI), ubiquitin conjugating enzyme (E2), and 20S proteasome (20S) and glucocorticoid receptor (GR) mRNA and protein expression, myofibrillar protein content, DNA content, caspase-3 activity, serum skeletal muscle troponin-I (sTnI) and cortisol (CORT), and muscle strength. METHODS: Nine males underwent two identical eccentric exercise bouts (BT1 and BT2) 3 wk apart involving seven sets of 10 repetitions at 150% one-repetition maximum of the dominant knee extensors. Blood and muscle biopsy samples were obtained before and at 6 and 24 h postexercise whereas muscle strength was assessed before and at 24, 48, and 72 h postexercise. Data were analyzed with separate 2 x 3 and 2 x 4 factorial ANOVA (P < 0.05). RESULTS: Decrements in strength and increased soreness occurred at 24 and 48 h postexercise for both bouts (P < 0.05); however, the changes for BT1 were greater than BT2. Serum CORT and sTnI were greater immediately after and at 6, 24, and 48 h postexercise for both bouts; however, the differences in BT1 were greater than BT2 (P < 0.05). Caspase-3 activity and the mRNA and protein levels of UBI, E2, 20S, and GR were increased at 6 and 24 h postexercise, and these differences were greater for BT1 than BT2 (P < 0.05). For BT1, DNA and myofibrillar protein content decreases were apparent at 24 h postexercise (P < 0.05) but not in BT2. CONCLUSION: These results indicate that muscle injury occurring from an initial bout of eccentric exercise seems to decrease muscle strength and myofibrillar protein, possibly due to apoptosis and up-regulation of glucocorticoid receptor mediated increases in UBI-proteolytic pathway activity, all of which appear to be tempered with a repeated eccentric exercise bout.


Assuntos
Exercício Físico/fisiologia , Músculo Esquelético/metabolismo , Receptores de Glucocorticoides/metabolismo , Ubiquitina/metabolismo , Adulto , Biópsia , Caspase 3 , Caspases/metabolismo , Cisteína Endopeptidases/metabolismo , Teste de Esforço , Humanos , Masculino , Complexos Multienzimáticos/metabolismo , Contração Muscular/fisiologia , Proteínas Musculares/metabolismo , Músculo Esquelético/enzimologia , Músculo Esquelético/patologia , Complexo de Endopeptidases do Proteassoma , Enzimas de Conjugação de Ubiquitina/metabolismo
9.
J Sports Sci Med ; 3(4): 226-33, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24624007

RESUMO

The present study determined the effects of concentric and eccentric muscle actions on the contents of serum myostatin and follistatin-like related gene (FLRG). Eight untrained males performed one exercise bout with each leg, separated by three weeks. One bout consisted of 7 sets of 10 repetitions of eccentric muscle actions of the knee extensors at 150% of the concentric 1-RM while the other bout consisted of 7 sets of 10 repetitions of concentric muscle actions at 75% 1-RM. The legs used and the bouts performed were randomized. Five days prior to each exercise bout, baseline measurements were taken for muscle strength. For both bouts, a venous blood sample was obtained immediately prior to exercise and again at 6, 24, and 48 hr post-exercise. Data were analyzed with 2 X 4 (bout x test) ANOVA (p < 0.05). Increases in serum myostatin and FLRG occurred with each exercise bout and, excluding 48 hr post-exercise, were significantly correlated to one another (p < 0.05). After eccentric exercise, peak increases of 68% and 50% (p < 0.05) were observed for myostatin and FLRG, respectively. Similar increases of 54% and 44% (p < 0.05) were observed after concentric muscle actions. There was no significant difference in expression of myostatin or FLRG as a function of muscle action type. Our results suggest that a single bout of exercise with either eccentric or concentric muscle actions appear to elicit a similar increase in serum myostatin and FLRG. Therefore, the type of muscle action may not be as much a mitigating factor for increasing serum myostatin and FLRG rather than the muscle action per se. Key PointsEccentric muscle actions do not preferentially increase serum myostatin.Increases in serum myostatin in response to eccentric muscle actions are associated with increase in serum FLRG.Increases in serum myostatin and FLRG in response to eccentric muscle actions are not correlated to serum cortisol.

10.
Int J Sport Nutr Exerc Metab ; 17(1): 92-108, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17460335

RESUMO

This study examined the effects of an aromatase-inhibiting nutritional supplement on serum steroid hormones, body composition, and clinical safety markers. Sixteen eugonadal young men ingested either Novedex XT or a placebo daily for 8 wk, followed by a 3-wk washout period. Body composition was assessed and blood and urine samples obtained at weeks 0, 4, 8, and 11. Data were analyzed by 2-way repeated-measures ANOVA. Novedex XT resulted in average increases of 283%, 625%, 566%, and 438% for total testosterone (P=0.001), free testosterone (P=0.001), dihydrotestosterone (P=0.001), and the testosterone:estrogen ratio (P=0.001), respectively, whereas fat mass decreased 3.5% (P=0.026) during supplementation. No significant differences were observed in blood and urinary clinical safety markers or for any of the other serum hormones (P>0.05). This study indicates that Novedex XT significantly increases serum androgen levels and decreases fat mass.


Assuntos
Inibidores da Aromatase/farmacologia , Composição Corporal/efeitos dos fármacos , Estrogênios/sangue , Testosterona/sangue , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Adulto , Análise de Variância , Composição Corporal/fisiologia , Estudos Cross-Over , Suplementos Nutricionais , Humanos , Masculino , Fatores de Tempo
11.
J Int Soc Sports Nutr ; 4: 10, 2007 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-17919327

RESUMO

BACKGROUND: The purpose of this study was to examine the effects of a functional coffee beverage containing additional caffeine, green tea extracts, niacin and garcinia cambogia to regular coffee to determine the effects on resting energy expenditure (REE) and hemodynamic variables. METHODS: Subjects included five male (26 +/- 2.1 y, 97.16 +/- 10.05 kg, 183.89 +/- 6.60 cm) and five female (28.8 +/- 5.3 y, 142.2 +/- 12.6 lbs) regular coffee drinkers. Subjects fasted for 10 hours and were assessed for 1 hour prior (PRE) and 3 hours following 1.5 cups of coffee ingestion [JavaFittrade mark Energy Extreme (JF) ~400 mg total caffeine; Folgers (F) ~200 mg total caffeine] in a double-blind, crossover design. REE, resting heart rate (RHR), and systolic (SBP) and diastolic (DBP) blood pressure was assessed at PRE and 1, 2, and 3-hours post coffee ingestion. Data were analyzed by three-factor repeated measures ANOVA (p < 0.05). RESULTS: JF trial resulted in a significant main effect for REE (p < 0.01), SBP (p < 0.01), RER (p < 0.01), and VO2 (p < 0.01) compared to F, with no difference between trials on the RHR and DBP variables. A significant interaction for trial and time point (p < 0.05) was observed for the variable REE. The JF trial resulted in a significant overall mean increase in REE of 14.4% (males = 12.1%, females = 17.9%) over the observation period (p < 0.05), while the F trial produced an overall decrease in REE of 5.7%. SBP was significantly higher in the JF trial; however, there was no significant increase from PRE to 3-hours post. CONCLUSION: Results from this study suggest that JavaFittrade mark Energy Extreme coffee is more effective than Folgers regular caffeinated coffee at increasing REE in regular coffee drinkers for up to 3 hours following ingestion without any adverse hemodynamic effects.

12.
J Int Soc Sports Nutr ; 4: 25, 2007 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-18067677

RESUMO

The purpose of this study was to examine the effects of ingesting JavaFittrade mark Energy Extreme (JEE) on aerobic and anaerobic performance measures in recreationally-active male and female coffee drinkers. Five male (27.6 +/- 4.2 yrs, 93.2 +/- 11.7 kg, 181.6 +/- 6.9 cm) and five female (29 +/- 4.6 yrs, 61.5 +/- 9.2 kg, 167.6 +/- 6.9 cm) regular coffee drinkers (i.e., 223.9 +/- 62.7 mg.d-1 of caffeine) participated in this study. In a cross-over, randomized design, participants performed a baseline (BASELINE) graded treadmill test (GXT) for peak VO2 assessment and a Wingate test for peak power. Approximately 3-4 d following BASELINE testing, participants returned to the lab for the first trial and ingested 354 ml of either JEE or decaffeinated coffee (DECAF), after which they performed a GXT and Wingate test. Criterion measures during the GXT included an assessment of peakVO2 at maximal exercise, as well as VO2 at 3 minutes and 10 minutes post-exercise. Additionally, time-to-exhaustion (TTE), maximal RPE, mean heart rate (HR), mean systolic pressure (SBP), and mean diastolic blood pressure (DBP) were measured during each condition. Criterion measures for the Wingate included mean HR, SBP, DBP, peak power, and time to peak power (TTP). Participants then returned to the lab approximately one week later to perform the second trial under the same conditions as the first, except consuming the remaining coffee. Data were analyzed using a one way ANOVA (p < 0.05). Our results indicate that JEE significantly increased VO2 at 3 minutes post-exercise when compared to BASELINE (p = 0.04) and DECAF (p = 0.02) values, which may be beneficial in enhancing post-exercise fat metabolism.

13.
J Int Soc Sports Nutr ; 3: 19-27, 2006 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-18500969

RESUMO

PURPOSE: Methoxyisoflavone (M), 20-hydroxyecdysone (E), and sulfo-polysaccharide (CSP3) have been marketed to athletes as dietary supplements that can increase strength and muscle mass during resistance-training. However, little is known about their potential ergogenic value. The purpose of this study was to determine whether these supplements affect training adaptations and/or markers of muscle anabolism/catabolism in resistance-trained athletes. METHODS: Forty-five resistance-trained males (20.5 +/- 3 yrs; 179 +/- 7 cm, 84 +/- 16 kg, 17.3 +/- 9% body fat) were matched according to FFM and randomly assigned to ingest in a double blind manner supplements containing either a placebo (P); 800 mg/day of M; 200 mg of E; or, 1,000 mg/day of CSP3 for 8-weeks during training. At 0, 4, and 8-weeks, subjects donated fasting blood samples and completed comprehensive muscular strength, muscular endurance, anaerobic capacity, and body composition analysis. Data were analyzed by repeated measures ANOVA. RESULTS: No significant differences (p > 0.05) were observed in training adaptations among groups in the variables FFM, percent body fat, bench press 1 RM, leg press 1 RM or sprint peak power. Anabolic/catabolic analysis revealed no significant differences among groups in active testosterone (AT), free testosterone (FT), cortisol, the AT to cortisol ratio, urea nitrogen, creatinine, the blood urea nitrogen to creatinine ratio. In addition, no significant differences were seen from pre to post supplementation and/or training in AT, FT, or cortisol. CONCLUSION: Results indicate that M, E, and CSP3 supplementation do not affect body composition or training adaptations nor do they influence the anabolic/catabolic hormone status or general markers of catabolism in resistance-trained males.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA