RESUMO
Pyrroloquinoline quinone (PQQ) added to purified diets devoid of PQQ improves indices of perinatal development in rats and mice. Herein, PQQ nutritional status and lysine metabolism are described, prompted by a report that PQQ functions as a vitamin-like enzymatic cofactor important in lysine metabolism (Nature 422 [2003] 832). Alternatively, we propose that PQQ influences lysine metabolism, but by mechanisms that more likely involve changes in mitochondrial content. PQQ deprivation in both rats and mice resulted in a decrease in mitochondrial content. In rats, alpha-aminoadipic acid (alphaAA), which is derived from alpha-aminoadipic semialdehyde (alphaAAS) and made from lysine in mitochondria, and the plasma levels of amino acids known to be oxidized in mitochondria (e.g., Thr, Ser, and Gly) were correlated with changes in the liver mitochondrial content of PQQ-deprived rats, but not PQQ-supplemented rats. In contrast, the levels of NAD dependent alpha-aminoadipate-delta-semialdehyde dehydrogenase (AASDH), a cytosolic enzyme important to alphaAA production from alphaAAS, was not influenced by PQQ dietary status. Moreover, the levels of U26 mRNA were not significantly changed even when diets differed markedly in PQQ and dietary lysine content. U26 mRNA levels were measured, because of U26's proposed, albeit questionable role as a PQQ-dependent enzyme involved in alphaAA formation.
Assuntos
DNA Mitocondrial/metabolismo , Lisina/metabolismo , Cofator PQQ/farmacologia , Ácido 2-Aminoadípico/sangue , Ácido 2-Aminoadípico/metabolismo , Animais , Feminino , L-Aminoadipato-Semialdeído Desidrogenase/genética , L-Aminoadipato-Semialdeído Desidrogenase/metabolismo , Camundongos , Estado Nutricional , Cofator PQQ/sangue , Gravidez , Proteínas/genética , Proteínas/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-DawleyRESUMO
Lysyl oxidase activity is critical for the assembly and cross-linking of extracellular matrix proteins, such as collagen and elastin. Moreover, lysyl oxidase activity is sensitive to changes in copper status and genetic perturbations in copper transport, e.g., mutations in the P-type ATPase gene, ATP7A, associated with cellular copper transport. Lysyl oxidase may also serve as a vehicle for copper transport from extracellular matrix cells. Herein, we demonstrate that sufficient lysyl oxidase functional activity is present in the rat embryo at gestation day (GD) 9 to be detected in conventional enzyme assays. Estimation of embryonic lysyl oxidase functional activity, however, required partial purification in order to remove inhibitors. From GD 9 to GD 15, lysyl oxidase activity was relatively constant when expressed per unit of protein or DNA. In contrast, the steady-state levels of lysyl oxidase and ATP7A mRNA, measured by RT-PCR and expressed relative to total RNA and cyclophilin mRNA, increased approximately fourfold from GD 9 to 15. The pattern of temporal expression for ATP7A was consistent with its possible role in copper delivery to lysyl oxidase.
Assuntos
Adenosina Trifosfatases/genética , Proteínas de Transporte/genética , Proteínas de Transporte de Cátions , Embrião de Mamíferos/enzimologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteína-Lisina 6-Oxidase/genética , Proteínas Recombinantes de Fusão , Animais , Transporte Biológico , Cobre/metabolismo , ATPases Transportadoras de Cobre , Desenvolvimento Embrionário e Fetal , Regulação Enzimológica da Expressão Gênica , Idade Gestacional , Peptidilprolil Isomerase/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por MatrizRESUMO
Lysyl oxidase (EC 1.4.3.13), a cuproenzyme, can account for 10-30% of the copper present in connective tissue. Herein, we assess the extent to which tissue copper concentrations and lysyl oxidase activity are related because the functional activity of lysyl oxidase and the copper content of chick tendon are both related to dietary copper intake. Chicks (1-d old) were fed diets (basal copper concentration, 0.4 microg/g diet) to which copper was added from 0 to 16 microg/g diet. Liver and plasma copper levels tended to normalize in chickens that consumed from 1 to 4 microg copper/g of diet, whereas tendon copper concentrations suggested an unusual accumulation of copper in chickens that consumed 16 microg copper/g diet. The molecular weight of lysyl oxidase was also estimated using matrix-assisted laser desorption ionization/time-of-flight/mass spectrometry (MALDI/TOF/MS). A novel aspect of these measurements was estimation of protein mass directly from the surface of chick tendons and aortae. Whether copper deficiency (0 added copper) or copper supplementation (16 microg copper/g of diet) caused changes in the molecular weight of protein(s) in tendon corresponding to lysyl oxidase was addressed. The average molecular weight of the peak corresponding to lysyl oxidase in tendon and aorta from copper-deficient birds was 28,386 Da +/- 86, whereas the average molecular weight of corresponding protein in tendon from copper-supplemented birds was 28,639 Da +/- 122. We propose that the shift in molecular weight is due in part to copper binding and the formation of lysyl tyrosyl quinone, the cofactor at the active site of lysyl oxidase.