Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell Rep Med ; 4(3): 100971, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36871558

RESUMO

Identifying the molecular mechanisms that promote optimal immune responses to coronavirus disease 2019 (COVID-19) vaccination is critical for future rational vaccine design. Here, we longitudinally profile innate and adaptive immune responses in 102 adults after the first, second, and third doses of mRNA or adenovirus-vectored COVID-19 vaccines. Using a multi-omics approach, we identify key differences in the immune responses induced by ChAdOx1-S and BNT162b2 that correlate with antigen-specific antibody and T cell responses or vaccine reactogenicity. Unexpectedly, we observe that vaccination with ChAdOx1-S, but not BNT162b2, induces an adenoviral vector-specific memory response after the first dose, which correlates with the expression of proteins with roles in thrombosis with potential implications for thrombosis with thrombocytopenia syndrome (TTS), a rare but serious adverse event linked to adenovirus-vectored vaccines. The COVID-19 Vaccine Immune Responses Study thus represents a major resource that can be used to understand the immunogenicity and reactogenicity of these COVID-19 vaccines.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Vacinas , Adulto , Humanos , Adenoviridae/genética , Anticorpos , Vacina BNT162 , COVID-19/prevenção & controle , Vacinas contra COVID-19/efeitos adversos , RNA Mensageiro/genética
2.
STAR Protoc ; 3(1): 101220, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35284839

RESUMO

We present this protocol using a mouse model to assess the impact of early-life antibiotic exposure on mammalian lifespan and the composition of the gut microbiota over time. We describe longitudinal fecal sampling and health monitoring following early-life antibiotic exposure. We detail DNA extraction and 16S rRNA gene sequencing to longitudinally profile the composition of the fecal microbiota. Finally, we discuss how to address potential confounders such as the stochastic recolonization of the gut microbiota following antibiotic exposure. For complete details on the use and execution of this protocol, please refer to Lynn et al. (2021).


Assuntos
Antibacterianos , Microbioma Gastrointestinal , Animais , Antibacterianos/efeitos adversos , Fezes , Microbioma Gastrointestinal/genética , Longevidade , Mamíferos/genética , Camundongos , RNA Ribossômico 16S/genética
3.
FASEB Bioadv ; 3(10): 829-840, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34632317

RESUMO

Despite promising preclinical and clinical data demonstrating that immune agonist antibody immunotherapies (IAAs) such as αOX40 induce strong antitumor immune responses, clinical translation has been significantly hampered by the propensity of some IAAs to induce dose-limiting and sometimes life-threatening immunotoxicities such as cytokine release syndrome and hepatotoxicity. For example, in a recent study αOX40 was shown to induce significant liver damage in mice by inducing the pyroptosis of liver natural killer T cells (NKT) cells. Surprisingly; however, given these previous reports, αOX40 treatment in our hands did not induce NKT cell pyroptosis or liver damage. We investigated numerous potential confounding factors including age, sex, tumor burden, dosing strategy, and the gut microbiota, which could have explained this discrepancy with the previous study. In none of these experiments did we find that αOX40 induced any more than very mild inflammation in the liver. Our study therefore suggests that, preclinically, αOX40 is a safe and effective immunotherapy and further studies into the clinical benefit of αOX40 are warranted.

4.
Cell Rep Med ; 2(12): 100464, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-35028606

RESUMO

Immune agonist antibodies (IAAs) are promising immunotherapies that target co-stimulatory receptors to induce potent anti-tumor immune responses, particularly when combined with checkpoint inhibitors. Unfortunately, their clinical translation is hampered by serious dose-limiting, immune-mediated toxicities, including high-grade and sometimes fatal liver damage, cytokine release syndrome (CRS), and colitis. We show that the immunotoxicity, induced by the IAAs anti-CD40 and anti-CD137, is dependent on the gut microbiota. Germ-free or antibiotic-treated mice have significantly reduced colitis, CRS, and liver damage following IAA treatment compared with conventional mice or germ-free mice recolonized via fecal microbiota transplant. MyD88 signaling is required for IAA-induced CRS and for anti-CD137-induced, but not anti-CD40-induced, liver damage. Importantly, antibiotic treatment does not impair IAA anti-tumor efficacy, alone or in combination with anti-PD1. Our results suggest that microbiota-targeted therapies could overcome the toxicity induced by IAAs without impairing their anti-tumor activity.


Assuntos
Antineoplásicos/farmacologia , Antígenos CD40/imunologia , Microbioma Gastrointestinal , Imunoterapia/efeitos adversos , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/imunologia , Animais , Antibacterianos/farmacologia , Ácidos e Sais Biliares/metabolismo , Síndrome da Liberação de Citocina/imunologia , Síndrome da Liberação de Citocina/patologia , Transplante de Microbiota Fecal , Microbioma Gastrointestinal/efeitos dos fármacos , Vida Livre de Germes , Inflamação/patologia , Interferon Tipo I/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/imunologia , Fígado/metabolismo , Fígado/patologia , Camundongos Endogâmicos C57BL , Fator 88 de Diferenciação Mieloide/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA