Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Nat Immunol ; 22(7): 839-850, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34168371

RESUMO

Granulomas are complex cellular structures composed predominantly of macrophages and lymphocytes that function to contain and kill invading pathogens. Here, we investigated the single-cell phenotypes associated with antimicrobial responses in human leprosy granulomas by applying single-cell and spatial sequencing to leprosy biopsy specimens. We focused on reversal reactions (RRs), a dynamic process whereby some patients with disseminated lepromatous leprosy (L-lep) transition toward self-limiting tuberculoid leprosy (T-lep), mounting effective antimicrobial responses. We identified a set of genes encoding proteins involved in antimicrobial responses that are differentially expressed in RR versus L-lep lesions and regulated by interferon-γ and interleukin-1ß. By integrating the spatial coordinates of the key cell types and antimicrobial gene expression in RR and T-lep lesions, we constructed a map revealing the organized architecture of granulomas depicting compositional and functional layers by which macrophages, T cells, keratinocytes and fibroblasts can each contribute to the antimicrobial response.


Assuntos
Hanseníase Virchowiana/imunologia , Hanseníase Tuberculoide/imunologia , Mycobacterium leprae/imunologia , Pele/imunologia , Adolescente , Adulto , Idoso , Feminino , Fibroblastos/imunologia , Fibroblastos/microbiologia , Fibroblastos/patologia , Perfilação da Expressão Gênica , Interações Hospedeiro-Patógeno , Humanos , Queratinócitos/imunologia , Queratinócitos/microbiologia , Queratinócitos/patologia , Hanseníase Virchowiana/genética , Hanseníase Virchowiana/microbiologia , Hanseníase Virchowiana/patologia , Hanseníase Tuberculoide/genética , Hanseníase Tuberculoide/microbiologia , Hanseníase Tuberculoide/patologia , Macrófagos/imunologia , Macrófagos/microbiologia , Macrófagos/patologia , Masculino , Pessoa de Meia-Idade , Mycobacterium leprae/patogenicidade , RNA-Seq , Análise de Célula Única , Pele/microbiologia , Pele/patologia , Linfócitos T/imunologia , Linfócitos T/microbiologia , Linfócitos T/patologia , Transcriptoma
2.
Nat Immunol ; 13(12): 1155-61, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23142775

RESUMO

The induction of type I interferons by the bacterial secondary messengers cyclic di-GMP (c-di-GMP) or cyclic di-AMP (c-di-AMP) is dependent on a signaling axis that involves the adaptor STING, the kinase TBK1 and the transcription factor IRF3. Here we identified the heliase DDX41 as a pattern-recognition receptor (PRR) that sensed both c-di-GMP and c-di-AMP. DDX41 specifically and directly interacted with c-di-GMP. Knockdown of DDX41 via short hairpin RNA in mouse or human cells inhibited the induction of genes encoding molecules involved in the innate immune response and resulted in defective activation of STING, TBK1 and IRF3 in response to c-di-GMP or c-di-AMP. Our results suggest a mechanism whereby c-di-GMP and c-di-AMP are detected by DDX41, which forms a complex with STING to signal to TBK1-IRF3 and activate the interferon response.


Assuntos
GMP Cíclico/análogos & derivados , RNA Helicases DEAD-box/metabolismo , Fosfatos de Dinucleosídeos/metabolismo , Interferon Tipo I/imunologia , Listeria monocytogenes/imunologia , Listeria monocytogenes/metabolismo , Receptores de Reconhecimento de Padrão/metabolismo , Animais , Linhagem Celular , GMP Cíclico/metabolismo , RNA Helicases DEAD-box/genética , Humanos , Imunidade Inata , Fator Regulador 3 de Interferon/metabolismo , Macrófagos/imunologia , Proteínas de Membrana/metabolismo , Camundongos , Proteínas Serina-Treonina Quinases/metabolismo , Interferência de RNA , RNA Interferente Pequeno , Receptores de Reconhecimento de Padrão/genética , Sistemas do Segundo Mensageiro , Transdução de Sinais
3.
Immunology ; 156(2): 164-173, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30357820

RESUMO

Macrophage (MΦ) polarization is triggered during the innate immune response to defend against microbial pathogens, but can also contribute to disease pathogenesis. In a previous study, we found that interleukin-15 (IL-15) -derived classically activated macrophages (M1 MΦ) have enhanced antimicrobial activity, whereas IL-10-derived alternatively activated macrophages (M2 MΦ) were highly phagocytic but lacked antimicrobial activity. Given that the ability to modulate MΦ polarization from M2 MΦ to M1 MΦ may promote a more effective immune response to infection, we investigated the plasticity of these MΦ programs. Addition of IL-10 to M1 MΦ induced M2-like MΦ, but IL-15 had little effect on M2 MΦ. We determined the set of immune receptors that are present on M2 MΦ, elucidating two candidates for inducing plasticity of M2 MΦ, Toll-like receptor 1 (TLR1) and interferonγ (IFN-γ) receptor 1. Stimulation of M2 MΦ with TLR2/1 ligand (TLR2/1L) or IFN-γ alone was not sufficient to alter M2 MΦ phenotype or function. However, co-addition of TLR2/1L and IFN-γ re-educated M2 MΦ towards the M1 MΦ phenotype, with a decrease in the phagocytosis of lipids and mycobacteria, as well as recovery of the vitamin-D-dependent antimicrobial pathway compared with M2 MΦ maintained in polarizing conditions. Similarly, treatment of M2 MΦ with both TLR2/1L and anti-IL-10 neutralizing antibodies led to polarization to the M1-like MΦ phenotype and function. Together, our data demonstrate an approach to induce MΦ plasticity that provides the potential for re-educating MΦ function in human mycobacterial disease to promote host defense and limit pathogenesis.


Assuntos
Ativação de Macrófagos , Macrófagos/imunologia , Infecções por Mycobacterium/imunologia , Fagocitose , Receptor 1 Toll-Like/imunologia , Receptor 2 Toll-Like/imunologia , Citocinas/imunologia , Feminino , Humanos , Macrófagos/patologia , Masculino , Infecções por Mycobacterium/patologia , Receptores de Interferon/imunologia , Receptor de Interferon gama
4.
PLoS Pathog ; 12(8): e1005808, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27532668

RESUMO

As circulating monocytes enter the site of disease, the local microenvironment instructs their differentiation into tissue macrophages (MΦ). To identify mechanisms that regulate MΦ differentiation, we studied human leprosy as a model, since M1-type antimicrobial MΦ predominate in lesions in the self-limited form, whereas M2-type phagocytic MΦ are characteristic of the lesions in the progressive form. Using a heterotypic co-culture model, we found that unstimulated endothelial cells (EC) trigger monocytes to become M2 MΦ. However, biochemical screens identified that IFN-γ and two families of small molecules activated EC to induce monocytes to differentiate into M1 MΦ. The gene expression profiles induced in these activated EC, when overlapped with the transcriptomes of human leprosy lesions, identified Jagged1 (JAG1) as a potential regulator of MΦ differentiation. JAG1 protein was preferentially expressed in the lesions from the self-limited form of leprosy, and localized to the vascular endothelium. The ability of activated EC to induce M1 MΦ was JAG1-dependent and the addition of JAG1 to quiescent EC facilitated monocyte differentiation into M1 MΦ with antimicrobial activity against M. leprae. Our findings indicate a potential role for the IFN-γ-JAG1 axis in instructing MΦ differentiation as part of the host defense response at the site of disease in human leprosy.


Assuntos
Diferenciação Celular/fisiologia , Proteína Jagged-1/imunologia , Hanseníase/imunologia , Macrófagos/citologia , Técnicas de Cocultura , Células Endoteliais/imunologia , Células Endoteliais/metabolismo , Humanos , Imuno-Histoquímica , Macrófagos/imunologia , Microscopia Confocal , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase em Tempo Real , Transcriptoma , Transfecção
5.
PLoS Pathog ; 12(6): e1005705, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27355424

RESUMO

Triggering antimicrobial mechanisms in macrophages infected with intracellular pathogens, such as mycobacteria, is critical to host defense against the infection. To uncover the unique and shared antimicrobial networks induced by the innate and adaptive immune systems, gene expression profiles generated by RNA sequencing (RNAseq) from human monocyte-derived macrophages (MDMs) activated with TLR2/1 ligand (TLR2/1L) or IFN-γ were analyzed. Weighed gene correlation network analysis identified modules of genes strongly correlated with TLR2/1L or IFN-γ that were linked by the "defense response" gene ontology term. The common TLR2/1L and IFN-γ inducible human macrophage host defense network contained 16 antimicrobial response genes, including S100A12, which was one of the most highly induced genes by TLR2/1L. There is limited information on the role of S100A12 in infectious disease, leading us to test the hypothesis that S100A12 contributes to host defense against mycobacterial infection in humans. We show that S100A12 is sufficient to directly kill Mycobacterium tuberculosis and Mycobacterium leprae. We also demonstrate that S100A12 is required for TLR2/1L and IFN-γ induced antimicrobial activity against M. leprae in infected macrophages. At the site of disease in leprosy, we found that S100A12 was more strongly expressed in skin lesions from tuberculoid leprosy (T-lep), the self-limiting form of the disease, compared to lepromatous leprosy (L-lep), the progressive form of the disease. These data suggest that S100A12 is part of an innate and adaptive inducible antimicrobial network that contributes to host defense against mycobacteria in infected macrophages.


Assuntos
Hanseníase/imunologia , Macrófagos/imunologia , Proteína S100A12/imunologia , Citometria de Fluxo , Imunofluorescência , Perfilação da Expressão Gênica , Humanos , Macrófagos/microbiologia , Infecções por Mycobacterium/imunologia , Mycobacterium leprae/imunologia , Mycobacterium tuberculosis/imunologia , Reação em Cadeia da Polimerase em Tempo Real , Transcriptoma
6.
J Infect Dis ; 207(6): 947-56, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23255567

RESUMO

Galectin-3 is a ß-galactoside-binding lectin widely expressed on epithelial and hematopoietic cells, and its expression is frequently associated with a poor prognosis in cancer. Because it has not been well-studied in human infectious disease, we examined galectin-3 expression in mycobacterial infection by studying leprosy, an intracellular infection caused by Mycobacterium leprae. Galectin-3 was highly expressed on macrophages in lesions of patients with the clinically progressive lepromatous form of leprosy; in contrast, galectin-3 was almost undetectable in self-limited tuberculoid lesions. We investigated the potential function of galectin-3 in cell-mediated immunity using peripheral blood monocytes. Galectin-3 enhanced monocyte interleukin 10 production to a TLR2/1 ligand, whereas interleukin 12p40 secretion was unaffected. Furthermore, galectin-3 diminished monocyte to dendritic cell differentiation and T-cell antigen presentation. These data demonstrate an association of galectin-3 with unfavorable host response in leprosy and a potential mechanism for impaired host defense in humans.


Assuntos
Galectina 3/farmacologia , Hanseníase Virchowiana/imunologia , Hanseníase Tuberculoide/imunologia , Monócitos/metabolismo , Apresentação de Antígeno/efeitos dos fármacos , Antígenos CD1/metabolismo , Diferenciação Celular/efeitos dos fármacos , Galectina 3/genética , Galectina 3/metabolismo , Expressão Gênica , Humanos , Imunidade Celular , Imunidade Inata , Interleucina-10/metabolismo , Subunidade p40 da Interleucina-12/metabolismo , Hanseníase Virchowiana/metabolismo , Hanseníase Tuberculoide/metabolismo , Macrófagos/metabolismo , Monócitos/efeitos dos fármacos , Mycobacterium leprae , RNA Mensageiro/metabolismo
7.
Front Immunol ; 14: 1284148, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38162653

RESUMO

Introduction: The COVID-19 pandemic has highlighted the need to identify mechanisms of antiviral host defense against SARS-CoV-2. One such mediator is interferon-g (IFN-γ), which, when administered to infected patients, is reported to result in viral clearance and resolution of pulmonary symptoms. IFN-γ treatment of a human lung epithelial cell line triggered an antiviral activity against SARS-CoV-2, yet the mechanism for this antiviral response was not identified. Methods: Given that IFN-γ has been shown to trigger antiviral activity via the generation of nitric oxide (NO), we investigated whether IFN-γ induction of antiviral activity against SARS-CoV-2 infection is dependent upon the generation of NO in human pulmonary epithelial cells. We treated the simian epithelial cell line Vero E6 and human pulmonary epithelial cell lines, including A549-ACE2, and Calu-3, with IFN-γ and observed the resulting induction of NO and its effects on SARS-CoV-2 replication. Pharmacological inhibition of inducible nitric oxide synthase (iNOS) was employed to assess the dependency on NO production. Additionally, the study examined the effect of interleukin-1b (IL-1ß) on the IFN-g-induced NO production and its antiviral efficacy. Results: Treatment of Vero E6 cells with IFN-γ resulted in a dose-responsive induction of NO and an inhibitory effect on SARS-CoV-2 replication. This antiviral activity was blocked by pharmacologic inhibition of iNOS. IFN-γ also triggered a NO-mediated antiviral activity in SARS-CoV-2 infected human lung epithelial cell lines A549-ACE2 and Calu-3. IL-1ß enhanced IFN-γ induction of NO, but it had little effect on antiviral activity. Discussion: Given that IFN-g has been shown to be produced by CD8+ T cells in the early response to SARS-CoV-2, our findings in human lung epithelial cell lines, of an IFN-γ-triggered, NO-dependent, links the adaptive immune response to an innate antiviral pathway in host defense against SARS-CoV-2. These results underscore the importance of IFN-γ and NO in the antiviral response and provide insights into potential therapeutic strategies for COVID-19.


Assuntos
COVID-19 , Interferon gama , Óxido Nítrico , Humanos , Enzima de Conversão de Angiotensina 2 , COVID-19/imunologia , Interferon gama/imunologia , Óxido Nítrico/imunologia , SARS-CoV-2/fisiologia , Replicação Viral
8.
Sci Immunol ; 7(73): eabo2787, 2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35867799

RESUMO

Acne affects 1 in 10 people globally, often resulting in disfigurement. The disease involves excess production of lipids, particularly squalene, increased growth of Cutibacterium acnes, and a host inflammatory response with foamy macrophages. By combining single-cell and spatial RNA sequencing as well as ultrahigh-resolution Seq-Scope analyses of early acne lesions on back skin, we identified TREM2 macrophages expressing lipid metabolism and proinflammatory gene programs in proximity to hair follicle epithelium expressing squalene epoxidase. We established that the addition of squalene induced differentiation of TREM2 macrophages in vitro, which were unable to kill C. acnes. The addition of squalene to macrophages inhibited induction of oxidative enzymes and scavenged oxygen free radicals, providing an explanation for the efficacy of topical benzoyl peroxide in the clinical treatment of acne. The present work has elucidated the mechanisms by which TREM2 macrophages and unsaturated lipids, similar to their involvement in atherosclerosis, may contribute to the pathogenesis of acne.


Assuntos
Acne Vulgar , Esqualeno , Acne Vulgar/tratamento farmacológico , Acne Vulgar/etiologia , Acne Vulgar/patologia , Humanos , Inflamação , Lipídeos , Macrófagos/patologia , Glicoproteínas de Membrana , Receptores Imunológicos/uso terapêutico , Esqualeno/uso terapêutico
9.
J Clin Invest ; 131(2)2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33211671

RESUMO

TH17 cell subpopulations have been defined that contribute to inflammation and homeostasis, yet the characteristics of TH17 cells that contribute to host defense against infection are not clear. To elucidate the antimicrobial machinery of the TH17 subset, we studied the response to Cutibacterium acnes, a skin commensal that is resistant to IL-26, the only known TH17-secreted protein with direct antimicrobial activity. We generated C. acnes-specific antimicrobial TH17 clones (AMTH17) with varying antimicrobial activity against C. acnes, which we correlated by RNA sequencing to the expression of transcripts encoding proteins that contribute to antimicrobial activity. Additionally, we validated that AMTH17-mediated killing of C. acnes and bacterial pathogens was dependent on the secretion of granulysin, granzyme B, perforin, and histone H2B. We found that AMTH17 cells can release fibrous structures composed of DNA decorated with histone H2B that entangle C. acnes that we call T cell extracellular traps (TETs). Within acne lesions, H2B and IL-17 colocalized in CD4+ T cells, in proximity to TETs in the extracellular space composed of DNA decorated with H2B. This study identifies a functionally distinct subpopulation of TH17 cells with an ability to form TETs containing secreted antimicrobial proteins that capture and kill bacteria.


Assuntos
Acne Vulgar/imunologia , Armadilhas Extracelulares/imunologia , Propionibacteriaceae/imunologia , Dermatopatias Bacterianas/imunologia , Células Th17/imunologia , Acne Vulgar/microbiologia , Humanos , RNA-Seq , Dermatopatias Bacterianas/microbiologia
10.
Front Immunol ; 12: 695373, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34512625

RESUMO

Langerhans cells (LCs) reside in the epidermis where they are poised to mount an antimicrobial response against microbial pathogens invading from the outside environment. To elucidate potential pathways by which LCs contribute to host defense, we mined published LC transcriptomes deposited in GEO and the scientific literature for genes that participate in antimicrobial responses. Overall, we identified 31 genes in LCs that encode proteins that contribute to antimicrobial activity, ten of which were cross-validated in at least two separate experiments. Seven of these ten antimicrobial genes encode chemokines, CCL1, CCL17, CCL19, CCL2, CCL22, CXCL14 and CXCL2, which mediate both antimicrobial and inflammatory responses. Of these, CCL22 was detected in seven of nine transcriptomes and by PCR in cultured LCs. Overall, the antimicrobial genes identified in LCs encode proteins with broad antibacterial activity, including against Staphylococcus aureus, which is the leading cause of skin infections. Thus, this study illustrates that LCs, consistent with their anatomical location, are programmed to mount an antimicrobial response against invading pathogens in skin.


Assuntos
Peptídeos Antimicrobianos/genética , Epiderme/metabolismo , Células de Langerhans/metabolismo , Infecções Cutâneas Estafilocócicas/genética , Staphylococcus aureus/patogenicidade , Transcriptoma , Células Cultivadas , Bases de Dados Genéticas , Epiderme/imunologia , Epiderme/microbiologia , Perfilação da Expressão Gênica , Interações Hospedeiro-Patógeno , Humanos , Células de Langerhans/imunologia , Células de Langerhans/microbiologia , Infecções Cutâneas Estafilocócicas/imunologia , Infecções Cutâneas Estafilocócicas/metabolismo , Infecções Cutâneas Estafilocócicas/microbiologia , Staphylococcus aureus/imunologia
11.
Infect Immun ; 78(11): 4634-43, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20713631

RESUMO

The ability of microbial pathogens to target specific cell types is a key aspect of the pathogenesis of infectious disease. Mycobacterium leprae, by infecting Schwann cells, contributes to nerve injury in patients with leprosy. Here, we investigated mechanisms of host-pathogen interaction in the peripheral nerve lesions of leprosy. We found that the expression of the C-type lectin, CD209, known to be expressed on tissue macrophages and to mediate the uptake of M. leprae, was present on Schwann cells, colocalizing with the Schwann cell marker, CNPase (2',3'-cyclic nucleotide 3'-phosphodiesterase), along with the M. leprae antigen PGL-1 in the peripheral nerve biopsy specimens. In vitro, human CD209-positive Schwann cells, both from primary cultures and a long-term line, have a higher binding of M. leprae compared to CD209-negative Schwann cells. Interleukin-4, known to be expressed in skin lesions from multibacillary patients, increased CD209 expression on human Schwann cells and subsequent Schwann cell binding to M. leprae, whereas Th1 cytokines did not induce CD209 expression on these cells. Therefore, the regulated expression of CD209 represents a common mechanism by which Schwann cells and macrophages bind and take up M. leprae, contributing to the pathogenesis of leprosy.


Assuntos
Moléculas de Adesão Celular/metabolismo , Interações Hospedeiro-Patógeno , Interleucina-4/metabolismo , Lectinas Tipo C/metabolismo , Hanseníase Tuberculoide/patologia , Mycobacterium leprae/fisiologia , Receptores de Superfície Celular/metabolismo , Células de Schwann/microbiologia , Linhagem Celular Tumoral , Humanos , Interleucina-4/imunologia , Hanseníase Tuberculoide/imunologia , Hanseníase Tuberculoide/microbiologia , Mycobacterium leprae/patogenicidade , Células de Schwann/imunologia , Células de Schwann/metabolismo , Células de Schwann/patologia , Regulação para Cima
12.
Infect Immun ; 78(3): 1012-21, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20008541

RESUMO

Gelatinases A and B (matrix metalloproteinase 2 [MMP-2] and MMP-9, respectively) can induce basal membrane breakdown and leukocyte migration, but their role in leprosy skin inflammation remains unclear. In this study, we analyzed clinical specimens from leprosy patients taken from stable, untreated skin lesions and during reactional episodes (reversal reaction [RR] and erythema nodosum leprosum [ENL]). The participation of MMPs in disease was suggested by (i) increased MMP mRNA expression levels in skin biopsy specimens correlating with the expression of gamma interferon (IFN-gamma) and tumor necrosis factor alpha (TNF-alpha), (ii) the detection of the MMP protein and enzymatic activity within the inflammatory infiltrate, (iii) increased MMP levels in patient sera, and (iv) the in vitro induction of MMP-9 by Mycobacterium leprae and/or TNF-alpha. It was observed that IFN-gamma, TNF-alpha, MMP-2, and MMP-9 mRNA levels were higher in tuberculoid than lepromatous lesions. In contrast, interleukin-10 and tissue inhibitor of MMP (TIMP-1) message were not differentially modulated. These data correlated with the detection of the MMP protein evidenced by immunohistochemistry and confocal microscopy. When RR and ENL lesions were analyzed, an increase in TNF-alpha, MMP-2, and MMP-9, but not TIMP-1, mRNA levels was observed together with stronger MMP activity (zymography/in situ zymography). Moreover, following in vitro stimulation of peripheral blood cells, M. leprae induced the expression of MMP-9 (mRNA and protein) in cultured cells. Overall, the present data demonstrate an enhanced MMP/TIMP-1 ratio in the inflammatory states of leprosy and point to potential mechanisms for tissue damage. These results pave the way toward the application of new therapeutic interventions for leprosy reactions.


Assuntos
Hanseníase/imunologia , Leucócitos/imunologia , Metaloproteinases da Matriz/imunologia , Mycobacterium leprae/imunologia , Pele/imunologia , Pele/microbiologia , Adulto , Movimento Celular , Feminino , Perfilação da Expressão Gênica , Humanos , Imuno-Histoquímica , Técnicas In Vitro , Inflamação , Mediadores da Inflamação/análise , Masculino , Microscopia Confocal , Pessoa de Meia-Idade , Pele/química , Pele/patologia , Adulto Jovem
13.
Immunology ; 131(3): 405-14, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20561085

RESUMO

Leprosy is an infectious disease in which the clinical manifestations correlate with the type of immune response mounted to the pathogen, Mycobacterium leprae. To investigate which biological pathways or gene sets are over-represented in lepromatous (L-Lep) versus tuberculoid (T-Lep) patients that might be relevant in disease pathogenesis, we compared the gene expression profiles of L-lep versus T-lep skin lesions using knowledge-guided bioinformatic analysis, incorporating data on likely biological functions, including gene ontology information and regulatory data. Analysis of probe sets comparatively increased in expression in L-lep versus T-lep revealed multiple pathways and functional groups involving B-cell genes (P values all < 0.005) relevant to the dataset. Further pathways analysis of B-cell genes comparatively increased in expression in L-lep versus T-lep lesions revealed a potential network linking the expression of immunoglobulin M (IgM) and interleukin-5 (IL-5). Analysis of the leprosy lesions by immunohistology indicated that there was approximately 8% more IgM-positive cells in L-lep lesions than in T-lep lesions. Furthermore, IL-5 synergized in vitro with M. leprae to enhance total IgM secretion from peripheral blood mononuclear cells. This pathways analysis of leprosy in combination with our in vitro studies implicates a role for IL-5 in the increased IgM at the site of disease in leprosy.


Assuntos
Linfócitos B/metabolismo , Imunoglobulina M/biossíntese , Interleucina-5/biossíntese , Hanseníase/imunologia , Mycobacterium leprae/imunologia , Tuberculose Pulmonar/imunologia , Linfócitos B/imunologia , Linfócitos B/microbiologia , Linfócitos B/patologia , Biópsia , Células Cultivadas , Perfilação da Expressão Gênica , Humanos , Imunoglobulina M/genética , Imunoglobulina M/imunologia , Imuno-Histoquímica , Interleucina-5/genética , Interleucina-5/imunologia , Interleucina-5/farmacologia , Hanseníase/genética , Hanseníase/metabolismo , Ativação Linfocitária , Mycobacterium leprae/patogenicidade , Pele/imunologia , Pele/metabolismo , Pele/microbiologia , Pele/patologia , Sindecana-1/biossíntese , Células Th2/imunologia , Tuberculose Pulmonar/genética , Tuberculose Pulmonar/metabolismo
14.
J Invest Dermatol ; 140(9): 1824-1836.e7, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32092350

RESUMO

Langhans multinucleated giant cells (LGCs) are a specific type of multinucleated giant cell containing a characteristic horseshoe-shaped ring of nuclei that are present within granulomas of infectious etiology. Although cytokines that trigger macrophage activation (such as IFN-γ) induce LGC formation, it is not clear whether cytokines that trigger macrophage differentiation contribute to LGC formation. Here, we found that IL-15, a cytokine that induces M1 macrophage differentiation, programs human peripheral blood adherent cells to form LGCs. Analysis of the IL-15‒treated adherent cell transcriptome identified gene networks for T cells, DNA damage and replication, and IFN-inducible genes that correlated with IL-15 treatment and LGC-type multinucleated giant cell formation. Gene networks enriched for myeloid cells were anticorrelated with IL-15 treatment and LGC formation. Functional studies revealed that T cells were required for IL-15‒induced LGC formation, involving a direct contact with myeloid cells through CD40L-CD40 interaction and IFN-γ release. These data indicate that IL-15 induces LGC formation through the direct interaction of activated T cells and myeloid cells.


Assuntos
Células Gigantes de Langhans/imunologia , Interleucina-15/metabolismo , Ativação de Macrófagos , Comunicação Celular/imunologia , Células Cultivadas , Redes Reguladoras de Genes/imunologia , Células Gigantes de Langhans/metabolismo , Humanos , Interferon gama/metabolismo , Cultura Primária de Células , RNA-Seq , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Transcriptoma/imunologia
15.
Sci Rep ; 9(1): 5288, 2019 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-30918279

RESUMO

Macrophages orchestrate immune responses by sensing and responding to pathogen-associated molecules. These responses are modulated by prior conditioning with cytokines such as interferons (IFNs). Type I and II IFN have opposing functions in many biological scenarios, yet macrophages directly stimulated with Type I or II IFN activate highly overlapping gene expression programs. We hypothesized that a sequential conditioning-stimulation approach would reveal with greater specificity the differential effects of Type I and II IFN on human macrophages. By first conditioning with IFN then stimulating with toll-like receptor ligands and cytokines, followed by genome-wide RNA-seq analysis, we identified 713 genes whose expression was unaffected by IFN alone but showed potentiated or diminished responses to a stimulus after conditioning. For example, responses to the cytokine TNF were restricted by Type II IFN conditioning but potentiated by Type I IFN conditioning. We observed that the effects of IFN were not uniformly pro- or anti-inflammatory, but highly gene-specific and stimulus-specific. By assessing expression levels of key signal transducers and characterizing chromatin accessibility by ATAC-seq, we identify the likely molecular mechanisms underlying Type I and Type II-specific effects, distinguishing between modulation of cytoplasmic signaling networks and the nuclear epigenome that synergistically regulate macrophage immune responses.


Assuntos
Interferon Tipo I/metabolismo , Interferon beta/farmacologia , Interferon gama/metabolismo , Macrófagos/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Células Cultivadas , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Análise de Componente Principal , RNA-Seq , Transdução de Sinais/efeitos dos fármacos
16.
PLoS Negl Trop Dis ; 13(10): e0007764, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31600201

RESUMO

Reversal reactions (RRs) in leprosy are characterized by a reduction in the number of bacilli in lesions associated with an increase in cell-mediated immunity against the intracellular bacterium Mycobacterium leprae, the causative pathogen of leprosy. To identify the mechanisms that contribute to cell-mediated immunity in leprosy, we measured changes in the whole blood-derived transcriptome of patients with leprosy before, during and after RR. We identified an 'RR signature' of 1017 genes that were upregulated at the time of the clinical diagnosis of RR. Using weighted gene correlated network analysis (WGCNA), we detected a module of 794 genes, bisque4, that was significantly correlated with RR, of which 434 genes were part of the RR signature. An enrichment for both IFN-γ and IFN-ß downstream gene pathways was present in the RR signature as well as the RR upregulated genes in the bisque4 module, including those encoding proteins of the guanylate binding protein (GBP) family that contributes to antimicrobial responses against mycobacteria. Specifically, GBP1, GBP2, GBP3 and GBP5 mRNAs were upregulated in the RR peripheral blood transcriptome, with GBP1, GBP2 and GBP5 mRNAs also upregulated in the RR disease lesion transcriptome. These data indicate that RRs involve a systemic upregulation of IFN-γ downstream genes including GBP family members as part of the host antimicrobial response against mycobacteria.


Assuntos
Proteínas de Ligação ao GTP/genética , Interferon gama/imunologia , Hanseníase/imunologia , Hanseníase/metabolismo , Mapeamento Cromossômico , Expressão Gênica/efeitos dos fármacos , Perfilação da Expressão Gênica , Humanos , Imunidade Celular , Interferon beta , Mycobacterium leprae/imunologia , RNA Mensageiro , Transcriptoma , Regulação para Cima
17.
PLoS Negl Trop Dis ; 13(7): e0007589, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31344041

RESUMO

The initial interaction between a microbial pathogen and the host immune response influences the outcome of the battle between the host and the foreign invader. Leprosy, caused by the obligate intracellular pathogen Mycobacterium leprae, provides a model to study relevant human immune responses. Previous studies have adopted a targeted approach to investigate host response to M. leprae infection, focusing on the induction of specific molecules and pathways. By measuring the host transcriptome triggered by M. leprae infection of human macrophages, we were able to detect a host gene signature 24-48 hours after infection characterized by specific innate immune pathways involving the cell fate mechanisms autophagy and apoptosis. The top upstream regulator in the M. leprae-induced gene signature was NUPR1, which is found in the M. leprae-induced cell fate pathways. The induction of NUPR1 by M. leprae was dependent on the production of the type I interferon (IFN), IFN-ß. Furthermore, NUPR1 mRNA and protein were upregulated in the skin lesions from patients with the multibacillary form of leprosy. Together, these data indicate that M. leprae induces a cell fate program which includes NUPR1 as part of the host response in the progressive form of leprosy.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Hanseníase/genética , Macrófagos/microbiologia , Mycobacterium leprae/imunologia , Proteínas de Neoplasias/genética , Células Cultivadas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Interferon Tipo I/imunologia , Hanseníase/imunologia , Hanseníase/microbiologia , Macrófagos/imunologia , Transdução de Sinais
18.
J Clin Invest ; 129(5): 1926-1939, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30939123

RESUMO

IL-26 is an antimicrobial protein secreted by Th17 cells that has the ability to directly kill extracellular bacteria. To ascertain whether IL-26 contributes to host defense against intracellular bacteria, we studied leprosy, caused by the obligate intracellular pathogen Mycobacterium leprae, as a model. Analysis of leprosy skin lesions by gene expression profiling and immunohistology revealed that IL-26 was more strongly expressed in lesions from the self-limited tuberculoid compared with expression in progressive lepromatous patients. IL-26 directly bound to M. leprae in axenic culture and reduced bacteria viability. Furthermore, IL-26, when added to human monocyte-derived macrophages infected with M. leprae, entered the infected cell, colocalized with the bacterium, and reduced bacteria viability. In addition, IL-26 induced autophagy via the cytoplasmic DNA receptor stimulator of IFN genes (STING), as well as fusion of phagosomes containing bacilli with lysosomal compartments. Altogether, our data suggest that the Th17 cytokine IL-26 contributes to host defense against intracellular bacteria.


Assuntos
Interleucinas/imunologia , Hanseníase Virchowiana/microbiologia , Hanseníase Tuberculoide/microbiologia , Células Th17/imunologia , Autofagia , Citocinas/imunologia , Perfilação da Expressão Gênica , Humanos , Lisossomos/imunologia , Lisossomos/microbiologia , Macrófagos/imunologia , Monócitos/citologia , Mycobacterium leprae , Mycobacterium tuberculosis , Fagossomos/imunologia , Proteínas Recombinantes/imunologia , Transdução de Sinais
19.
JCI Insight ; 4(8)2019 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-30996142

RESUMO

DC, through the uptake, processing, and presentation of antigen, are responsible for activation of T cell responses to defend the host against infection, yet it is not known if they can directly kill invading bacteria. Here, we studied in human leprosy, how Langerhans cells (LC), specialized DC, contribute to host defense against bacterial infection. IFN-γ treatment of LC isolated from human epidermis and infected with Mycobacterium leprae (M. leprae) activated an antimicrobial activity, which was dependent on the upregulation of the antimicrobial peptide cathelicidin and induction of autophagy. IFN-γ induction of autophagy promoted fusion of phagosomes containing M. leprae with lysosomes and the delivery of cathelicidin to the intracellular compartment containing the pathogen. Autophagy enhanced the ability of M. leprae-infected LC to present antigen to CD1a-restricted T cells. The frequency of IFN-γ labeling and LC containing both cathelicidin and autophagic vesicles was greater in the self-healing lesions vs. progressive lesions, thus correlating with the effectiveness of host defense against the pathogen. These data indicate that autophagy links the ability of DC to kill and degrade an invading pathogen, ensuring cell survival from the infection while facilitating presentation of microbial antigens to resident T cells.


Assuntos
Apresentação de Antígeno , Autofagia , Células de Langerhans/imunologia , Hanseníase/imunologia , Mycobacterium leprae/imunologia , Antígenos de Bactérias/imunologia , Peptídeos Catiônicos Antimicrobianos/imunologia , Peptídeos Catiônicos Antimicrobianos/metabolismo , Autofagossomos/imunologia , Autofagossomos/metabolismo , Autofagossomos/microbiologia , Biópsia , Células Cultivadas , Epiderme/imunologia , Epiderme/microbiologia , Epiderme/patologia , Humanos , Interferon gama/imunologia , Células de Langerhans/microbiologia , Células de Langerhans/ultraestrutura , Hanseníase/microbiologia , Hanseníase/patologia , Lisossomos/imunologia , Lisossomos/metabolismo , Lisossomos/microbiologia , Microscopia Eletrônica de Transmissão , Mycobacterium leprae/isolamento & purificação , Cultura Primária de Células , Proteínas Recombinantes/imunologia , Linfócitos T/imunologia , Regulação para Cima/imunologia , Catelicidinas
20.
Cell Rep ; 26(13): 3574-3585.e3, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30917313

RESUMO

To understand how the interaction between an intracellular bacterium and the host immune system contributes to outcome at the site of infection, we studied leprosy, a disease that forms a clinical spectrum, in which progressive infection by the intracellular bacterium Mycobacterium leprae is characterized by the production of type I IFNs and antibody production. Dual RNA-seq on patient lesions identifies two independent molecular measures of M. leprae, each of which correlates with distinct aspects of the host immune response. The fraction of bacterial transcripts, reflecting bacterial burden, correlates with a host type I IFN gene signature, known to inhibit antimicrobial responses. Second, the bacterial mRNA:rRNA ratio, reflecting bacterial viability, links bacterial heat shock proteins with the BAFF-BCMA host antibody response pathway. Our findings provide a platform for the interrogation of host and pathogen transcriptomes at the site of infection, allowing insight into mechanisms of inflammation in human disease.


Assuntos
Hanseníase/imunologia , Hanseníase/microbiologia , Mycobacterium leprae/genética , RNA Bacteriano , RNA-Seq , Adulto , Anticorpos Antibacterianos/genética , Anticorpos Antibacterianos/imunologia , Fator Ativador de Células B/imunologia , Feminino , Interações Hospedeiro-Patógeno , Humanos , Imunidade Humoral/genética , Interferon Tipo I/metabolismo , Hanseníase/patologia , Masculino , Mycobacterium leprae/imunologia , Plasmócitos/imunologia , RNA Mensageiro , RNA Ribossômico , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA