Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 294(12): 4538-4545, 2019 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-30696770

RESUMO

Astrotactin 1 (Astn1) and Astn2 are membrane proteins that function in glial-guided migration, receptor trafficking, and synaptic plasticity in the brain as well as in planar polarity pathways in the skin. Here we used glycosylation mapping and protease protection approaches to map the topologies of mouse Astn1 and Astn2 in rough microsomal membranes and found that Astn2 has a cleaved N-terminal signal peptide, an N-terminal domain located in the lumen of the rough microsomal membranes (topologically equivalent to the extracellular surface in cells), two transmembrane helices, and a large C-terminal lumenal domain. We also found that Astn1 has the same topology as Astn2, but we did not observe any evidence of signal peptide cleavage in Astn1. Both Astn1 and Astn2 mature through endoproteolytic cleavage in the second transmembrane helix; importantly, we identified the endoprotease responsible for the maturation of Astn1 and Astn2 as the endoplasmic reticulum signal peptidase. Differences in the degree of Astn1 and Astn2 maturation possibly contribute to the higher levels of the C-terminal domain of Astn1 detected on neuronal membranes of the central nervous system. These differences may also explain the distinct cellular functions of Astn1 and Astn2, such as in membrane adhesion, receptor trafficking, and planar polarity signaling.


Assuntos
Glicoproteínas/metabolismo , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Serina Endopeptidases/metabolismo , Animais , Biocatálise , Retículo Endoplasmático/metabolismo , Glicoproteínas/química , Glicosilação , Membranas Intracelulares/metabolismo , Camundongos , Microssomos/metabolismo , Proteínas do Tecido Nervoso/química , Proteólise
2.
FEBS J ; 287(13): 2744-2762, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31821735

RESUMO

The malarial parasite Plasmodium exports its own proteins to the cell surfaces of red blood cells (RBCs) during infection. Examples of exported proteins include members of the repetitive interspersed family (RIFIN) and subtelomeric variable open reading frame (STEVOR) family of proteins from Plasmodium falciparum. The presence of these parasite-derived proteins on surfaces of infected RBCs triggers the adhesion of infected cells to uninfected cells (rosetting) and to the vascular endothelium potentially obstructing blood flow. While there is a fair amount of information on the localization of these proteins on the cell surfaces of RBCs, less is known about how they can be exported to the membrane and the topologies they can adopt during the process. The first step of export is plausibly the cotranslational insertion of proteins into the endoplasmic reticulum (ER) of the parasite, and here, we investigate the insertion of three RIFIN and two STEVOR proteins into the ER membrane. We employ a well-established experimental system that uses N-linked glycosylation of sites within the protein as a measure to assess the extent of membrane insertion and the topology it assumes when inserted into the ER membrane. Our results indicate that for all the proteins tested, transmembranes (TMs) 1 and 3 integrate into the membrane, so that the protein assumes an overall topology of Ncyt-Ccyt. We also show that the segment predicted to be TM2 for each of the proteins likely does not reside in the membrane, but is translocated to the lumen.


Assuntos
Antígenos de Protozoários/química , Antígenos de Protozoários/metabolismo , Membrana Celular/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Plasmodium falciparum/fisiologia , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo , Membrana Celular/química , Retículo Endoplasmático , Células HEK293 , Humanos , Conformação Proteica
3.
J Mol Biol ; 430(18 Pt B): 3190-3199, 2018 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-29990469

RESUMO

Large clostridial toxins (LCTs) are a family of homologous proteins toxins that are directly responsible for the symptoms associated with a number of clostridial infections that cause disease in humans and in other animals. LCTs damage tissues by delivering a glucosyltransferase domain, which inactivates small GTPases, across the endosomal membrane and into the cytosol of target cells. Elucidating the mechanism of translocation for LCTs has been hampered by difficulties associated with identifying marginally hydrophobic segments that insert into the bounding membrane to form the translocation pore. Here, we directly measured the membrane-insertion partitioning propensity for segments spanning the putative pore-forming region using a translocon-mediated insertion assay and synthetic peptides. We identified membrane-inserting segments, as well as a conserved and functionally important negatively charged residue that requires protonation for efficient membrane insertion. We provide a model of the LCT pore, which provides insights into translocation for this enigmatic family of α-helical translocases.


Assuntos
Toxinas Bacterianas/química , Membrana Celular/genética , Proteínas Citotóxicas Formadoras de Poros/química , Toxinas Bacterianas/metabolismo , Toxinas Botulínicas Tipo A/química , Toxinas Botulínicas Tipo A/metabolismo , Membrana Celular/metabolismo , Clostridioides difficile , Humanos , Interações Hidrofóbicas e Hidrofílicas , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Modelos Moleculares , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Conformação Proteica
4.
Sci Rep ; 7: 43190, 2017 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-28233866

RESUMO

Variable surface antigens of Plasmodium falciparum have been a major research focus since they facilitate parasite sequestration and give rise to deadly malaria complications. Coupled with its potential use as a vaccine candidate, the recent suggestion that the repetitive interspersed families of polypeptides (RIFINs) mediate blood group A rosetting and influence blood group distribution has raised the research profile of these adhesins. Nevertheless, detailed investigations into the functions of this highly diverse multigene family remain hampered by the limited number of validated reagents. In this study, we assess the specificities of three promising polyclonal anti-RIFIN antibodies that were IgG-purified from sera of immunized animals. Their epitope regions were mapped using a 175,000-peptide microarray holding overlapping peptides of the P. falciparum variable surface antigens. Through immunoblotting and immunofluorescence imaging, we show that different antibodies give varying results in different applications/assays. Finally, we authenticate the antibody-based detection of RIFINs in two previously uncharacterized non-rosetting parasite lines by identifying the dominant rif transcripts using RNA sequencing.


Assuntos
Anticorpos Antiprotozoários/imunologia , Epitopos/imunologia , Proteínas de Membrana/imunologia , Plasmodium falciparum/imunologia , Proteínas de Protozoários/imunologia , Animais , Mapeamento de Epitopos , Perfilação da Expressão Gênica , Cabras , Plasmodium falciparum/genética , Coelhos , Análise de Sequência de RNA
5.
PLoS One ; 11(1): e0146155, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26727370

RESUMO

Quaking (QKI) is an RNA-binding protein involved in post-transcriptional mRNA processing. This gene is found to be associated with several human neurological disorders. Early expression of QKI proteins in the developing mouse neuroepithelium, together with neural tube defects in Qk mouse mutants, suggest the functional requirement of Qk for the establishment of the nervous system. As a knockout of Qk is embryonic lethal in mice, other model systems like the zebrafish could serve as a tool to study the developmental functions of qki. In the present study we sought to characterize the evolutionary relationship and spatiotemporal expression of qkia, qki2, and qkib; zebrafish homologs of human QKI. We found that qkia is an ancestral paralog of the single tetrapod Qk gene that was likely lost during the fin-to-limb transition. Conversely, qkib and qki2 are orthologs, emerging at the root of the vertebrate and teleost lineage, respectively. Both qki2 and qkib, but not qkia, were expressed in the progenitor domains of the central nervous system, similar to expression of the single gene in mice. Despite having partially overlapping expression domains, each gene has a unique expression pattern, suggesting that these genes have undergone subfunctionalization following duplication. Therefore, we suggest the zebrafish could be used to study the separate functions of qki genes during embryonic development.


Assuntos
Proteínas de Ligação a RNA/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Evolução Biológica , Cordados/anatomia & histologia , Cordados/genética , Sequência Conservada , Evolução Molecular , Extremidades/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Hibridização in Situ Fluorescente , Camundongos , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/genética , Sistema Nervoso/embriologia , Sistema Nervoso/metabolismo , Tubo Neural/metabolismo , Filogenia , Proteínas de Ligação a RNA/biossíntese , Reação em Cadeia da Polimerase em Tempo Real , Alinhamento de Sequência , Homologia de Sequência , Especificidade da Espécie , Sintenia , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/biossíntese
6.
FEBS Lett ; 589(24 Pt B): 3921-8, 2015 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-26545497

RESUMO

The function of the ATP-binding cassette transporter MRP6 is unknown but mutations in its gene cause pseudoxanthoma elasticum. We have investigated the membrane topology of the N-terminal transmembrane domain TMD0 of MRP6 and the membrane integration and orientation propensities of its transmembrane segments (TMs) by glycosylation mapping. Results demonstrate that TMD0 has five TMs, an Nout-Cin topology and that the less hydrophobic TMs have strong preference for their orientation in the membrane that affects the neighboring TMs. Two disease-causing mutations changing the number of positive charges in the loops of TMD0 did not affect the membrane insertion efficiencies of the adjacent TMs.


Assuntos
Membranas Intracelulares/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/química , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Retículo Endoplasmático/metabolismo , Humanos , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Estrutura Terciária de Proteína , Transporte Proteico , Deleção de Sequência
7.
Naturwissenschaften ; 96(1): 39-47, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18791694

RESUMO

The blood feeding vampire bats emerged from New World leaf-nosed bats that fed on fruit and insects. Plasminogen activator, a serine protease that regulates blood coagulation, is known to be expressed in the saliva of Desmodus rotundus (common vampire bat) and is thought to be a key enzyme for the emergence of blood feeding in vampire bats. To better understand the evolution of this biological function, we studied the plasminogen activator (PA) genes from all vampire bat species in light of their feeding transition to bird and subsequently mammalian blood. We include the rare species Diphylla ecaudata and Diaemus youngi, where plasminogen activator had not previously been studied and demonstrate that PA gene duplication observed in Desmodus is not essential to the vampire phenotype, but relates to the emergence of predominant mammalian blood feeding in this species. Plasminogen activator has evolved through gene duplication, domain loss, and sequence evolution leading to change in fibrin-specificity and susceptibility to plasminogen activator inhibitor-1. Before undertaking this study, only the four plasminogen activator isoforms from Desmodus were known. The evolution of vampire bat plasminogen activators can now be linked phylogenetically to the transition in feeding behavior among vampire bat species from bird to mammalian blood.


Assuntos
Quirópteros/genética , Comportamento Alimentar/fisiologia , Ativadores de Plasminogênio/genética , Animais , Velocidade do Fluxo Sanguíneo/genética , Quirópteros/sangue , Quirópteros/fisiologia , Clonagem Molecular , Éxons/genética , Modelos Genéticos , Filogenia , Probabilidade , Reação em Cadeia da Polimerase Via Transcriptase Reversa
8.
J Mol Evol ; 66(3): 258-65, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18320259

RESUMO

A microsatellite has previously been identified in myostatin in cattle. Sequencing of this region from other artiodactyls coupled with phylogenetic analysis has been used to uncover the potential origins of the microsatellite event, which appears either to have been born twice or to have been gained and lost within ruminants. While caprids and ovids share the ancestral state with pigs and other mammals, microsatellite activity (length polymorphism) is uncovered in both deer and bovids. The dynamic process of microsatellite evolution, including birth, is discussed here in light of several models. Finally, these models are evaluated in the context of patterns of microsatellite conservation between closely related mammalian genomes.


Assuntos
Repetições de Microssatélites/genética , Ruminantes/genética , Fator de Crescimento Transformador beta/genética , Animais , Sequência de Bases , Primers do DNA , Miostatina , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA