Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Drug Chem Toxicol ; : 1-15, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38757531

RESUMO

In this study, for the first time in the literature, a 2-(3-methoxyphenylamino)-2-oxoethyl acrylate (3MPAEA) molecule was synthesized in two steps, and a 2-chloro-N-(3-methoxyphenyl)acetamide (m-acetamide) was obtained in the first step. Experimental results were obtained using FTIR, 1H, and 13C NMR spectroscopy methods for m-acetamide and 3MPAEA compounds created in the laboratory environment and compared with theoretical results. Band gap (BG) energy, chemical hardness, electronegativity, chemical potential, and electrophilicity index were calculated. With vibration spectroscopic analysis, atom-molecule vibrations of the theoretical and experimental peaks of the spectrum were observed. The locations of C and H atoms were determined by nuclear magnetic resonance spectroscopy. The green, blue, and red regions of the potential energy map (MEP) map were examined. Some observed that the energy thermal, heat capacity, and entropy graphs increased in direct proportion to increasing the temperature in Kelvin, which is known as thermochemistry. The changes in the rotation, translation, and vibration of the molecule as its temperature increased were examined. When the thermochemistry surface map was examined, some observed that the temperature was high in the middle binding site of the molecules. Covalent interactions were graphed using the non-covalent interactions (NCIs) calculation method. In silico toxicity studies were carried out for m-acetamide and 3MPAEA molecules: fathead minnow LC50 (96 h), Daphnia magna LC50 (48 h), Tetrahymena pyriformis IGC50 (48 h), oral rat LD50, water solubility, bioconcentration factor, developmental toxicity, mutation, normal boiling point, flash point, melting point, density, thermal conductivity, viscosity, vapor pressure, etc. parameters were investigated.

2.
ACS Omega ; 9(7): 7910-7922, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38405536

RESUMO

The antibacterial, antifungal, and antioxidant activities of 2-chloro-N-(4-methoxyphenyl)acetamide (p-acetamide) and 2-(4-methoxyphenylamino)-2-oxoethyl methacrylate (MPAEMA) were investigated by in vitro experiments and in silico analyses. MPAEMA has an antibacterial effect only against Gram-positive Staphylococcus aureus. It was determined that this did not affect any other bacteria and Candida glabrata yeast. On the other hand, p-acetamide showed antimicrobial activity against S. aureus ATCC 25923, C. glabrata ATCC 90030, Bacillus subtilis NRRL 744, Enterococcus faecalis ATCC 551289, Escherichia coli ATCC 25922, Klebsiella pneumoniae NRLLB4420, Pseudomonas aeruginosa ATCC 27853, and Listeria monocytogenes ATCC 1911. p-Acetamide showed the greatest antifungal effect by inhibiting the colony growth of Trichoderma longibrachiatum (98%). This was followed by Mucor plumbeus with 83% and Fusarium solani with 21%. MPAEMA inhibited colony growth of T. longibrachiatum by 95% and that of M. plumbeus by 91%. Also, p-acetamide and MPAEMA had a scavenging effect on free radicals. According to results of the in silico analysis, the antimicrobial effect of these compounds is due to their effect on DNA ligase. Based on drug-likeness analysis, they were found to be consistent with the Lipinski, Veber, or Ghose rule. p-Acetamide and MPAEMA may be used as drugs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA