Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Behav Genet ; 47(1): 88-101, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27757730

RESUMO

Individuals involved in a social interaction exhibit different behavioral traits that, in combination, form the individual's behavioral responses. Selectively bred strains of silver foxes (Vulpes vulpes) demonstrate markedly different behaviors in their response to humans. To identify the genetic basis of these behavioral differences we constructed a large F2 population including 537 individuals by cross-breeding tame and aggressive fox strains. 98 fox behavioral traits were recorded during social interaction with a human experimenter in a standard four-step test. Patterns of fox behaviors during the test were evaluated using principal component (PC) analysis. Genetic mapping identified eight unique significant and suggestive QTL. Mapping results for the PC phenotypes from different test steps showed little overlap suggesting that different QTL are involved in regulation of behaviors exhibited in different behavioral contexts. Many individual behavioral traits mapped to the same genomic regions as PC phenotypes. This provides additional information about specific behaviors regulated by these loci. Further, three pairs of epistatic loci were also identified for PC phenotypes suggesting more complex genetic architecture of the behavioral differences between the two strains than what has previously been observed.


Assuntos
Comportamento Animal , Raposas/genética , Comportamento Social , Animais , Mapeamento Cromossômico , Cromossomos de Mamíferos/genética , Epistasia Genética , Feminino , Masculino , Fenótipo , Análise de Componente Principal , Locos de Características Quantitativas/genética , Característica Quantitativa Herdável
2.
Mamm Genome ; 23(1-2): 164-77, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22108806

RESUMO

The silver fox provides a rich resource for investigating the genetics of behavior, with strains developed by intensely selective breeding that display markedly different behavioral phenotypes. Until recently, however, the tools for conducting molecular genetic investigations in this species were very limited. In this review, the history of development of this resource and the tools to exploit it are described. Although the focus is on the genetics of domestication in the silver fox, there is a broader context. In particular, one expectation of the silver fox research is that it will be synergistic with studies in other species, including humans, to yield a more comprehensive understanding of the molecular mechanisms and evolution of a wider range of social cognitive behaviors.


Assuntos
Comportamento Animal , Raposas/genética , Raposas/psicologia , Animais , Cruzamento , Mapeamento Cromossômico , Cães , Repetições de Microssatélites , Fenótipo , Polimorfismo de Nucleotídeo Único , Comportamento Social
3.
BMC Genomics ; 12: 482, 2011 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-21967120

RESUMO

BACKGROUND: Two strains of the silver fox (Vulpes vulpes), with markedly different behavioral phenotypes, have been developed by long-term selection for behavior. Foxes from the tame strain exhibit friendly behavior towards humans, paralleling the sociability of canine puppies, whereas foxes from the aggressive strain are defensive and exhibit aggression to humans. To understand the genetic differences underlying these behavioral phenotypes fox-specific genomic resources are needed. RESULTS: cDNA from mRNA from pre-frontal cortex of a tame and an aggressive fox was sequenced using the Roche 454 FLX Titanium platform (> 2.5 million reads & 0.9 Gbase of tame fox sequence; >3.3 million reads & 1.2 Gbase of aggressive fox sequence). Over 80% of the fox reads were assembled into contigs. Mapping fox reads against the fox transcriptome assembly and the dog genome identified over 30,000 high confidence fox-specific SNPs. Fox transcripts for approximately 14,000 genes were identified using SwissProt and the dog RefSeq databases. An at least 2-fold expression difference between the two samples (p < 0.05) was observed for 335 genes, fewer than 3% of the total number of genes identified in the fox transcriptome. CONCLUSIONS: Transcriptome sequencing significantly expanded genomic resources available for the fox, a species without a sequenced genome. In a very cost efficient manner this yielded a large number of fox-specific SNP markers for genetic studies and provided significant insights into the gene expression profile of the fox pre-frontal cortex; expression differences between the two fox samples; and a catalogue of potentially important gene-specific sequence variants. This result demonstrates the utility of this approach for developing genomic resources in species with limited genomic information.


Assuntos
Raposas/genética , Córtex Pré-Frontal/metabolismo , Transcriptoma , Animais , Mapeamento de Sequências Contíguas , Bases de Dados Factuais , Cães , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA
4.
Behav Genet ; 41(4): 593-606, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21153916

RESUMO

During the second part of the twentieth century, Belyaev selected tame and aggressive foxes (Vulpes vulpes), in an effort known as the "farm-fox experiment", to recapitulate the process of animal domestication. Using these tame and aggressive foxes as founders of segregant backcross and intercross populations we have employed interval mapping to identify a locus for tame behavior on fox chromosome VVU12. This locus is orthologous to, and therefore validates, a genomic region recently implicated in canine domestication. The tame versus aggressive behavioral phenotype was characterized as the first principal component (PC) of a PC matrix made up of many distinct behavioral traits (e.g. wags tail; comes to the front of the cage; allows head to be touched; holds observer's hand with its mouth; etc.). Mean values of this PC for F1, backcross and intercross populations defined a linear gradient of heritable behavior ranging from tame to aggressive. The second PC did not follow such a gradient, but also mapped to VVU12, and distinguished between active and passive behaviors. These data suggest that (1) there are at least two VVU12 loci associated with behavior; (2) expression of these loci is dependent on interactions with other parts of the genome (the genome context) and therefore varies from one crossbred population to another depending on the individual parents that participated in the cross.


Assuntos
Comportamento Animal , Mapeamento Cromossômico/métodos , Raposas/genética , Genética Comportamental , Animais , Animais Domésticos , Cruzamentos Genéticos , Predisposição Genética para Doença , Escore Lod , Modelos Genéticos , Linhagem , Fenótipo , Análise de Componente Principal , Especificidade da Espécie
5.
J Hered ; 100 Suppl 1: S42-53, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19546120

RESUMO

High-quality sequencing of the dog (Canis lupus familiaris) genome has enabled enormous progress in genetic mapping of canine phenotypic variation. The red fox (Vulpes vulpes), another canid species, also exhibits a wide range of variation in coat color, morphology, and behavior. Although the fox genome has not yet been sequenced, canine genomic resources have been used to construct a meiotic linkage map of the red fox genome and begin genetic mapping in foxes. However, a more detailed gene-specific comparative map between the dog and fox genomes is required to establish gene order within homologous regions of dog and fox chromosomes and to refine breakpoints between homologous chromosomes of the 2 species. In the current study, we tested whether canine-derived gene-containing bacterial artificial chromosome (BAC) clones can be routinely used to build a gene-specific map of the red fox genome. Forty canine BAC clones were mapped to the red fox genome by fluorescence in situ hybridization (FISH). Each clone was uniquely assigned to a single fox chromosome, and the locations of 38 clones agreed with cytogenetic predictions. These results clearly demonstrate the utility of FISH mapping for construction of a whole-genome gene-specific map of the red fox. The further possibility of using canine BAC clones to map genes in the American mink (Mustela vison) genome was also explored. Much lower success was obtained for this more distantly related farm-bred species, although a few BAC clones were mapped to the predicted chromosomal locations.


Assuntos
Mapeamento Cromossômico/veterinária , Cromossomos Artificiais Bacterianos/genética , Cães/genética , Raposas/genética , Vison/genética , Animais , Genoma , Genômica/métodos , Hibridização in Situ Fluorescente
6.
PLoS One ; 10(6): e0127013, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26061395

RESUMO

The silver fox (Vulpes vulpes) offers a novel model for studying the genetics of social behavior and animal domestication. Selection of foxes, separately, for tame and for aggressive behavior has yielded two strains with markedly different, genetically determined, behavioral phenotypes. Tame strain foxes are eager to establish human contact while foxes from the aggressive strain are aggressive and difficult to handle. These strains have been maintained as separate outbred lines for over 40 generations but their genetic structure has not been previously investigated. We applied a genotyping-by-sequencing (GBS) approach to provide insights into the genetic composition of these fox populations. Sequence analysis of EcoT22I genomic libraries of tame and aggressive foxes identified 48,294 high quality SNPs. Population structure analysis revealed genetic divergence between the two strains and more diversity in the aggressive strain than in the tame one. Significant differences in allele frequency between the strains were identified for 68 SNPs. Three of these SNPs were located on fox chromosome 14 within an interval of a previously identified behavioral QTL, further supporting the importance of this region for behavior. The GBS SNP data confirmed that significant genetic diversity has been preserved in both fox populations despite many years of selective breeding. Analysis of SNP allele frequencies in the two populations identified several regions of genetic divergence between the tame and aggressive foxes, some of which may represent targets of selection for behavior. The GBS protocol used in this study significantly expanded genomic resources for the fox, and can be adapted for SNP discovery and genotyping in other canid species.


Assuntos
Agressão , Comportamento Animal , Raposas/genética , Genótipo , Locos de Características Quantitativas , Animais , Mapeamento Cromossômico , Raposas/fisiologia , Frequência do Gene , Polimorfismo de Nucleotídeo Único
7.
Biol J Linn Soc Lond ; 103(1): 168-175, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21625363

RESUMO

The foxes at Novosibirsk, Russia, are the only population of domesticated foxes in the world. These domesticated foxes originated from farm-bred silver foxes (Vulpes vulpes), whose genetic source is unknown. In this study we examined the origin of the domesticated strain of foxes and two other farm-bred fox populations (aggressive and unselected) maintained in Novosibirsk. To identify the phylogenetic origin of these populations we sequenced two regions of mtDNA, cytochrome b and D-loop, from 24 Novosibirsk foxes (8 foxes from each population) and compared them with corresponding sequences of native red foxes from Europe, Asia, Alaska and Western Canada, Eastern Canada, and the Western Mountains of the USA. We identified seven cytochrome b - D-loop haplotypes in Novosibirsk populations, four of which were previously observed in Eastern North America. The three remaining haplotypes differed by one or two base change from the most common haplotype in Eastern Canada. Φ(ST) analysis showed significant differentiation between Novosibirsk populations and red fox populations from all geographic regions except Eastern Canada. No haplotypes of Eurasian origin were identified in the Novosibirsk populations. These results are consistent with historical records indicating that the original breeding stock of farm-bred foxes originated from Prince Edward Island, Canada. Mitochondrial DNA data together with historical records indicate two stages in the selection of domesticated foxes: the first includes captive breeding for ~50 years with unconscious selection for behaviour; the second corresponds to over 50 further years of intensive selection for tame behaviour.

8.
Genome Res ; 17(3): 387-99, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17284676

RESUMO

A meiotic linkage map is essential for mapping traits of interest and is often the first step toward understanding a cryptic genome. Specific strains of silver fox (a variant of the red fox, Vulpes vulpes), which segregate behavioral and morphological phenotypes, create a need for such a map. One such strain, selected for docility, exhibits friendly dog-like responses to humans, in contrast to another strain selected for aggression. Development of a fox map is facilitated by the known cytogenetic homologies between the dog and fox, and by the availability of high resolution canine genome maps and sequence data. Furthermore, the high genomic sequence identity between dog and fox allows adaptation of canine microsatellites for genotyping and meiotic mapping in foxes. Using 320 such markers, we have constructed the first meiotic linkage map of the fox genome. The resulting sex-averaged map covers 16 fox autosomes and the X chromosome with an average inter-marker distance of 7.5 cM. The total map length corresponds to 1480.2 cM. From comparison of sex-averaged meiotic linkage maps of the fox and dog genomes, suppression of recombination in pericentromeric regions of the metacentric fox chromosomes was apparent, relative to the corresponding segments of acrocentric dog chromosomes. Alignment of the fox meiotic map against the 7.6x canine genome sequence revealed high conservation of marker order between homologous regions of the two species. The fox meiotic map provides a critical tool for genetic studies in foxes and identification of genetic loci and genes implicated in fox domestication.


Assuntos
Mapeamento Cromossômico , Cães/genética , Raposas/genética , Genoma/genética , Animais , Escore Lod , Meiose/genética , Repetições de Microssatélites/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA