Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Traffic ; 19(5): 354-369, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29451726

RESUMO

Live-cell correlative light-electron microscopy (live-cell-CLEM) integrates live movies with the corresponding electron microscopy (EM) image, but a major challenge is to relate the dynamic characteristics of single organelles to their 3-dimensional (3D) ultrastructure. Here, we introduce focused ion beam scanning electron microscopy (FIB-SEM) in a modular live-cell-CLEM pipeline for a single organelle CLEM. We transfected cells with lysosomal-associated membrane protein 1-green fluorescent protein (LAMP-1-GFP), analyzed the dynamics of individual GFP-positive spots, and correlated these to their corresponding fine-architecture and immediate cellular environment. By FIB-SEM we quantitatively assessed morphological characteristics, like number of intraluminal vesicles and contact sites with endoplasmic reticulum and mitochondria. Hence, we present a novel way to integrate multiple parameters of subcellular dynamics and architecture onto a single organelle, which is relevant to address biological questions related to membrane trafficking, organelle biogenesis and positioning. Furthermore, by using CLEM to select regions of interest, our method allows for targeted FIB-SEM, which significantly reduces time required for image acquisition and data processing.


Assuntos
Lisossomos/ultraestrutura , Biogênese de Organelas , Tomografia com Microscopia Eletrônica/métodos , Células HeLa , Humanos , Proteínas de Membrana Lisossomal/metabolismo , Lisossomos/metabolismo , Imagem Óptica/métodos
2.
Traffic ; 16(12): 1288-305, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26403612

RESUMO

Lysosomes are the main degradative compartments of eukaryotic cells. The CORVET and HOPS tethering complexes are well known for their role in membrane fusion in the yeast endocytic pathway. Yeast Vps33p is part of both complexes, and has two mammalian homologues: Vps33A and Vps33B. Vps33B is required for recycling of apical proteins in polarized cells and a causative gene for ARC syndrome. Here, we investigate whether Vps33B is also required in the degradative pathway. By fluorescence and electron microscopy we show that Vps33B depletion in HeLa cells leads to significantly increased numbers of late endosomes that together with lysosomes accumulate in the perinuclear region. Degradation of endocytosed cargo is impaired in these cells. By electron microscopy we show that endocytosed BSA-gold reaches late endosomes, but is decreased in lysosomes. The increase in late endosome numbers and the lack of internalized cargo in lysosomes are indicative for a defect in late endosomal-lysosomal fusion events, which explains the observed decrease in cargo degradation. A corresponding phenotype was found after Vps33A knock down, which in addition also resulted in decreased lysosome numbers. We conclude that Vps33B, in addition to its role in endosomal recycling, is required for late endosomal-lysosomal fusion events.


Assuntos
Endocitose/fisiologia , Endossomos/metabolismo , Lisossomos/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Endossomos/ultraestrutura , Técnicas de Silenciamento de Genes , Células HeLa , Humanos , Lisossomos/ultraestrutura , Fusão de Membrana/fisiologia , Microscopia Eletrônica , Microscopia de Fluorescência , Transporte Proteico , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/genética
3.
Traffic ; 14(2): 219-32, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23167963

RESUMO

The homotypic fusion and protein sorting (HOPS) complex is a multisubunit tethering complex that in yeast regulates membrane fusion events with the vacuole, the yeast lysosome. Mammalian homologs of all HOPS components have been found, but little is known about their function. Here, we studied the role of hVps41 and hVps39, two components of the putative human HOPS complex, in the endo-lysosomal pathway of human cells. By expressing hemagglutinin (HA)-tagged constructs, we show by immunoelectron microscopy (immunoEM) that both hVps41 and hVps39 associate with the limiting membrane of late endosomes as well as lysosomes. Small interference RNA (siRNA)-mediated knockdown of hVps41 or hVps39 resulted in an accumulation of late endosomes, a depletion in the number of lysosomes and a block in the degradation of endocytosed cargo. Lysosomal pH and cathepsin B activity remained unaltered in these conditions. By immunoEM we found that hVps41 or hVps39 knockdown impairs homotypic fusion between late endosomes as well as heterotypic fusion between late endosomes and lysosomes. Thus, our data show that both hVps41 and hVps39 are required for late endosomal-lysosomal fusion events and the delivery of endocytic cargo to lysosomes in human cells.


Assuntos
Endossomos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fusão de Membrana/genética , Proteínas de Transporte Vesicular/metabolismo , Proteínas Relacionadas à Autofagia , Catepsina B/metabolismo , Endocitose , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Membranas Intracelulares/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Lisossomos/metabolismo , Proteólise , RNA Interferente Pequeno , Proteínas de Transporte Vesicular/genética
4.
Traffic ; 12(8): 1037-55, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21535339

RESUMO

In metazoans, lysosomes are characterized by a unique tubular morphology, acidic pH, and specific membrane protein (LAMP) and lipid (cholesterol) composition as well as a soluble protein (hydrolases) composition. Here we show that perturbation to the eye-color gene, light, results in impaired lysosomal acidification, sterol accumulation, altered endosomal morphology as well as compromised lysosomal degradation. We find that Drosophila homologue of Vps41, Light, regulates the fusion of a specific subset of biosynthetic carriers containing characteristic endolysosomal membrane proteins, LAMP1, V0-ATPase and the cholesterol transport protein, NPC1, with the endolysosomal system, and is then required for the morphological progression of the multivesicular endosome. Inhibition of Light results in accumulation of biosynthetic transport intermediates that contain these membrane cargoes, whereas under similar conditions, endosomal delivery of soluble hydrolases, previously shown to be mediated by Dor, the Drosophila homologue of Vps18, is not affected. Unlike Dor, Light is recruited to endosomes in a PI3P-sensitive fashion wherein it facilitates fusion of these biosynthetic cargoes with the endosomes. Depletion of the mammalian counterpart of Light, hVps41, in a human cell line also inhibits delivery of hLAMP to endosomes, suggesting an evolutionarily conserved pathway in metazoa.


Assuntos
Proteínas de Membrana Lisossomal/metabolismo , Lisossomos/metabolismo , Esteróis/metabolismo , Adenosina Trifosfatases/metabolismo , Animais , Proteínas de Transporte/metabolismo , Células Cultivadas , Colesterol/metabolismo , Proteínas de Ligação a DNA/metabolismo , Drosophila , Proteínas de Drosophila/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Endossomos/metabolismo , Endossomos/ultraestrutura , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Hidrolases/metabolismo , Proteína 1 de Membrana Associada ao Lisossomo/metabolismo , Lisossomos/genética , Lisossomos/ultraestrutura , Proteínas de Membrana , Proteína C1 de Niemann-Pick , Transporte Proteico/genética , Bombas de Próton/metabolismo , Células Tumorais Cultivadas , ATPases Vacuolares Próton-Translocadoras/metabolismo , Proteínas de Transporte Vesicular/metabolismo
5.
Methods Cell Biol ; 177: 301-326, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37451771

RESUMO

Fluorescent biosensors are valuable tools to monitor protein activities and the functional state of organelles in live cells. However, the information provided by fluorescent microscopy (FM) is mostly limited in resolution and lacks ultrastructural context information. Protein activities are confined to organelle zones with a distinct membrane morphology, which can only be seen by electron microscopy (EM). EM, however, intrinsically lacks information on protein activities. The lack of methods to integrate these two imaging modalities has hampered understanding the functional organization of cellular organelles. Here we introduce "functional correlative microscopy" (functional CLEM) to directly infer functional information from live cells to EM with nanometer resolution. We label and visualize live cells with fluorescent biosensors after which they are processed for EM and imaged using a volume electron microscopy technique. Within a single dataset we correlate hundreds of fluorescent spots enabling quantitative analysis of the functional-ultrastructural data. We employ our method to monitor essential functional parameters of late endo-lysosomal compartments, i.e., pH, calcium, enzyme activities and cholesterol content. Our data reveal a steep functional difference in enzyme activity between late endosomes and lysosomes and unexpectedly high calcium levels in late endosomes. The presented CLEM workflow is compatible with a large repertoire of probes and paves the way for large scale functional studies of all types of cellular structures.


Assuntos
Cálcio , Microscopia Eletrônica de Volume , Humanos , Células HeLa , Microscopia Eletrônica , Lisossomos
6.
J Vis Exp ; (193)2023 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-37067272

RESUMO

The visualization of autophagic organelles at the ultrastructural level by electron microscopy (EM) is essential to establish their identity and reveal details that are important for understanding the autophagic process. However, EM methods often lack molecular information, obstructing the correlation of ultrastructural information obtained by EM to fluorescence microscopy-based localization of specific autophagy proteins. Furthermore, the rarity of autophagosomes in unaltered cellular conditions hampers investigation by EM, which requires high magnification, and hence provides a limited field of view. In answer to both challenges, an on-section correlative light-electron microscopy (CLEM) method based on fluorescent labeling was applied to correlate a common autophagosomal marker, LC3, to EM ultrastructure. The method was used to rapidly screen cells in fluorescence microscopy for LC3 labeling in combination with other relevant markers. Subsequently, the underlying ultrastructural features of selected LC3-labeled spots were identified by CLEM. The method was applied to starved cells without adding inhibitors of lysosomal acidification. In these conditions, LC3 was found predominantly on autophagosomes and rarely in autolysosomes, in which LC3 is rapidly degraded. These data show both the feasibility and sensitivity of this approach, demonstrating that CLEM can be used to provide ultrastructural insights on LC3-mediated autophagy in native conditions-without drug treatments or genetic alterations. Overall, this method presents a valuable tool for ultrastructural localization studies of autophagy proteins and other scarce antigens by bridging light microscopy to EM data.


Assuntos
Autofagia , Lisossomos , Microscopia Eletrônica , Microscopia de Fluorescência , Organelas
7.
Cell Rep Methods ; 2(5): 100220, 2022 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-35637912

RESUMO

We present a bimodal endocytic tracer, fluorescent BSA-gold (fBSA-Au), as a fiducial marker for 2D and 3D correlative light and electron microscopy (CLEM) applications. fBSA-Au consists of colloidal gold (Au) particles stabilized with fluorescent BSA. The conjugate is efficiently endocytosed and distributed throughout the 3D endolysosomal network of cells and has an excellent visibility in both fluorescence microscopy (FM) and electron microscopy (EM). We demonstrate that fBSA-Au facilitates rapid registration in several 2D and 3D CLEM applications using Tokuyasu cryosections, resin-embedded material, and cryoelectron microscopy (cryo-EM). Endocytosed fBSA-Au benefits from a homogeneous 3D distribution throughout the endosomal system within the cell, does not obscure any cellular ultrastructure, and enables accurate (50-150 nm) correlation of fluorescence to EM data. The broad applicability and visibility in both modalities makes fBSA-Au an excellent endocytic fiducial marker for 2D and 3D (cryo)CLEM applications.


Assuntos
Crioultramicrotomia , Microscopia Crioeletrônica/métodos , Microscopia Eletrônica , Microscopia de Fluorescência/métodos , Crioultramicrotomia/métodos
8.
EMBO Mol Med ; 13(5): e13258, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33851776

RESUMO

Vacuolar protein sorting 41 (VPS41) is as part of the Homotypic fusion and Protein Sorting (HOPS) complex required for lysosomal fusion events and, independent of HOPS, for regulated secretion. Here, we report three patients with compound heterozygous mutations in VPS41 (VPS41S285P and VPS41R662* ; VPS41c.1423-2A>G and VPS41R662* ) displaying neurodegeneration with ataxia and dystonia. Cellular consequences were investigated in patient fibroblasts and VPS41-depleted HeLa cells. All mutants prevented formation of a functional HOPS complex, causing delayed lysosomal delivery of endocytic and autophagic cargo. By contrast, VPS41S285P enabled regulated secretion. Strikingly, loss of VPS41 function caused a cytosolic redistribution of mTORC1, continuous nuclear localization of Transcription Factor E3 (TFE3), enhanced levels of LC3II, and a reduced autophagic response to nutrient starvation. Phosphorylation of mTORC1 substrates S6K1 and 4EBP1 was not affected. In a C. elegans model of Parkinson's disease, co-expression of VPS41S285P /VPS41R662* abolished the neuroprotective function of VPS41 against α-synuclein aggregates. We conclude that the VPS41 variants specifically abrogate HOPS function, which interferes with the TFEB/TFE3 axis of mTORC1 signaling, and cause a neurodegenerative disease.


Assuntos
Doenças Neurodegenerativas , Animais , Autofagia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Caenorhabditis elegans/genética , Células HeLa , Humanos , Lisossomos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Doenças Neurodegenerativas/genética , Transporte Proteico , Proteínas de Transporte Vesicular/metabolismo
9.
Mol Immunol ; 45(13): 3526-35, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18579208

RESUMO

Systemic administration of agents that neutralize or antagonize Th1-mediated pro-inflammatory responses has been demonstrated to ameliorate inflammation in chronic autoimmune disease. However, systemic administration of such immunosuppressive biologicals causes serious side effects and has only limited success. To minimize these side effects, autoantigen-specific lymphocytes have been proposed as a carrier to deliver immunosuppressive agents to sites of inflammation. Here we studied the effects of primary cartilage proteoglycan-specific CD4+ T cells that were transduced using an efficient method of viral transduction with active genes encoding IL-1beta receptor antagonist, soluble TNF-alpha receptor-Ig, IL-4 or IL-10 in chronic proteoglycan-induced arthritis in mice. This is the first study describing such gene therapy using primary CD4+ T cells in a chronic arthritis. Moreover, the impact of proteoglycan-specific Th1, Th2 or naïve T cells was studied. Although proteoglycan-TCR transgenic CD4+ T cells can transfer arthritis to lymphopenic recipients, none of the proteoglycan-TCR transgenic T cell phenotypes that were tested induced worsening of arthritis in wild type hosts. Proteoglycan-specific T cells ameliorated arthritis when expressing the transduced IL-10 gene, and not when expressing the other transgenes/phenotypes. Although all of the tested biologicals can suppress in a wide range of different inflammatory disorders, especially IL-10 would therefore serve as a promising candidate to be used in cellular gene therapy for chronic arthritis.


Assuntos
Artrite/terapia , Linfócitos T CD4-Positivos/fisiologia , Fatores Imunológicos/administração & dosagem , Imunoterapia Adotiva/métodos , Interleucina-10/administração & dosagem , Proteoglicanas/imunologia , Animais , Artrite/etiologia , Artrite/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Cartilagem/imunologia , Cartilagem/metabolismo , Epitopos de Linfócito T/imunologia , Epitopos de Linfócito T/metabolismo , Terapia Genética/métodos , Vetores Genéticos/imunologia , Vetores Genéticos/metabolismo , Vetores Genéticos/fisiologia , Fatores Imunológicos/genética , Interleucina-10/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Células NIH 3T3 , Proteoglicanas/efeitos adversos , Proteoglicanas/metabolismo , Transgenes
10.
Acta Biomater ; 66: 238-247, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29174589

RESUMO

Hydrogel-based 3D cell cultures are an emerging strategy for the regeneration of cartilage. In an attempt to regenerate dysfunctional intervertebral discs, nucleus pulposus (NP) cells can be cultured in hydrogels of various kinds and physical properties. Stiffness sensing through focal adhesions is believed to direct chondrogenesis, but the mechanisms by which this works are largely unknown. In this study we compared focal adhesion formation and glycosaminoglycan (GAG) deposition by NP cells in a range of hydrogels. Using a focal adhesion kinase (FAK) inhibitor, we demonstrated that focal adhesion signaling is involved in the response of NP cells in hydrogels that contain integrin binding sites (i.e. methacrylated gelatin (gelMA) and type II collagen), but not in hydrogels deplete from integrin binding sites such as alginate and agarose, or CD44-binding hydrogels based on hyaluronic acid. As a result of FAK inhibition we observedenhanced proteoglycan production in gelMA, but decreased production in type II collagen hydrogels, which could be explained by alteration in cell fate as supported by the increase in the adipogenic marker peroxisome proliferator-activated receptor gamma (PPARy). Furthermore, GAG deposition was inversely proportional to polymer concentration in integrin-binding gelMA, while no direct relationship was found for the non-integrin binding gels alginate and agarose. This corroborates our finding that focal adhesion formation plays an important role in NP cell response to its surrounding matrix. STATEMENT OF SIGNIFICANCE: Biomaterials are increasingly being investigated for regenerative medicine applications, including regeneration of the nucleus pulposus. Cells interact with their environment and are influenced by extracellular matrix or polymer properties. Insight in these interactions can improve regeneration and helps to understand degeneration processes. The role of focal adhesion formation in the regenerative response of nucleus pulposus cells is largely unknown. Therefore, the relation between materials, stiffness and focal adhesion formation is studied here.


Assuntos
Carboidratos/farmacologia , Colágeno/farmacologia , Adesões Focais/metabolismo , Hidrogéis/farmacologia , Núcleo Pulposo/citologia , Regeneração/efeitos dos fármacos , Transdução de Sinais , Actinas/metabolismo , Adulto , Idoso , Força Compressiva , DNA/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/antagonistas & inibidores , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Glicosaminoglicanos/metabolismo , Humanos , Degeneração do Disco Intervertebral/genética , Degeneração do Disco Intervertebral/patologia , Pessoa de Meia-Idade , Inibidores de Proteínas Quinases/farmacologia , Coloração e Rotulagem , Vinculina/metabolismo
11.
Nat Commun ; 9(1): 792, 2018 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-29476049

RESUMO

Recycling endosomes maintain plasma membrane homeostasis and are important for cell polarity, migration, and cytokinesis. Yet, the molecular machineries that drive endocytic recycling remain largely unclear. The CORVET complex is a multi-subunit tether required for fusion between early endosomes. Here we show that the CORVET-specific subunits Vps3 and Vps8 also regulate vesicular transport from early to recycling endosomes. Vps3 and Vps8 localise to Rab4-positive recycling vesicles and co-localise with the CHEVI complex on Rab11-positive recycling endosomes. Depletion of Vps3 or Vps8 does not affect transferrin recycling, but delays the delivery of internalised integrins to recycling endosomes and their subsequent return to the plasma membrane. Consequently, Vps3/8 depletion results in defects in integrin-dependent cell adhesion and spreading, focal adhesion formation, and cell migration. These data reveal a role for Vps3 and Vps8 in a specialised recycling pathway important for integrin trafficking.


Assuntos
Endossomos/metabolismo , Integrina beta1/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Adesão Celular , Membrana Celular/genética , Membrana Celular/metabolismo , Movimento Celular , Endossomos/genética , Células HeLa , Humanos , Integrina beta1/genética , Transporte Proteico , Proteínas de Transporte Vesicular/genética
13.
Nat Commun ; 4: 1361, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23322049

RESUMO

Targeted delivery of lysosome-associated membrane proteins is important for lysosome stability and function. Here we identify a pathway for transport of lysosome-associated membrane proteins directly from the trans-Golgi network to late endosomes, which exists in parallel to mannose 6-phosphate receptor and clathrin-dependent transport of lysosomal enzymes to early endosomes. By immunoelectron microscopy we localized endogenous LAMP-1 and -2 as well as LAMP-1-mGFP to non-coated, biosynthetic carriers at the trans-Golgi network and near late endosomes. These LAMP carriers were negative for mannose 6-phosphate receptor, adaptor-protein complex-1, secretory albumin and endocytic markers, but contained the homotypic fusion and protein sorting complex component hVps41 and the soluble N-ethylmaleimide-sensitive factor attachment protein receptors protein VAMP7. Knockdown of hVps41 or VAMP7 resulted in the accumulation of lysosome-associated membrane protein carriers, whereas knockdown of hVps39 or hVps18 did not, indicating that the effect of hVps41 is independent of CORVET/HOPS. Mannose 6-phosphate receptor carriers remained unaffected upon hVps41 or VAMP7 knockdown, implicating that hVps41 and VAMP7 are specifically involved in the fusion of trans-Golgi network-derived lysosome-associated membrane protein carriers with late endosomes.


Assuntos
Endossomos/metabolismo , Proteínas de Membrana Lisossomal/metabolismo , Proteínas R-SNARE/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Rede trans-Golgi/metabolismo , Animais , Clatrina/metabolismo , Endossomos/ultraestrutura , Técnicas de Silenciamento de Genes , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Células Hep G2 , Humanos , Proteína 2 de Membrana Associada ao Lisossomo , Modelos Biológicos , Transporte Proteico , Ratos , Receptor IGF Tipo 2/metabolismo , Vesículas Secretórias/metabolismo , Vesículas Secretórias/ultraestrutura , Rede trans-Golgi/ultraestrutura
14.
PLoS One ; 4(1): e4186, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19142233

RESUMO

BACKGROUND: The anti-inflammatory capacity of heat shock proteins (HSP) has been demonstrated in various animal models of inflammatory diseases and in patients. However, the mechanisms underlying this anti-inflammatory capacity are poorly understood. Therefore, the possible protective potential of HSP70 and its mechanisms were studied in proteoglycan (PG) induced arthritis (PGIA), a chronic and relapsing, T cell mediated murine model of arthritis. METHODOLOGY/PRINCIPAL FINDINGS: HSP70 immunization, 10 days prior to disease induction with PG, inhibited arthritis both clinically and histologically. In addition, it significantly reduced PG-specific IgG2a but not IgG1 antibody production. Furthermore, IFN-gamma and IL-10 production upon in vitro restimulation with HSP70 was indicative of the induction of an HSP70-specific T cell response in HSP70 immunized mice. Remarkably, HSP70 treatment also modulated the PG-specific T cell response, as shown by the increased production of IL-10 and IFN-gamma upon in vitro PG restimulation. Moreover, it increased IL-10 mRNA expression in CD4+CD25+ cells. HSP70 vaccination did not suppress arthritis in IL-10(-/-) mice, indicating the crucial role of IL-10 in the protective effect. CONCLUSIONS/SIGNIFICANCE: In conclusion, a single mycobacterial HSP70 immunization can suppress inflammation and tissue damage in PGIA and results in an enhanced regulatory response as shown by the antigen-specific IL-10 production. Moreover, HSP70 induced protection is critically IL-10 dependent.


Assuntos
Artrite Experimental/tratamento farmacológico , Proteínas de Choque Térmico HSP70/uso terapêutico , Interleucina-10/fisiologia , Animais , Artrite Experimental/induzido quimicamente , Proteínas de Choque Térmico HSP70/administração & dosagem , Proteínas de Choque Térmico HSP70/imunologia , Imunização , Inflamação/tratamento farmacológico , Camundongos , Mycobacteriaceae/química , Proteoglicanas/efeitos adversos , RNA Mensageiro , Linfócitos T/imunologia
15.
J Immunol ; 180(3): 1373-81, 2008 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-18209031

RESUMO

Deficient T cell regulation can be mechanistically associated with development of chronic autoimmune diseases. Therefore, combining the regulatory properties of IL-10 and the specificity of autoreactive CD4(+) T cells through adoptive cellular gene transfer of IL-10 via autoantigen-specific CD4(+) T cells seems an attractive approach to correct such deficient T cell regulation that avoids the risks of nonspecific immunosuppressive drugs. In this study, we studied how cartilage proteoglycan-specific CD4(+) T cells transduced with an active IL-10 gene (T(IL-10)) may contribute to the amelioration of chronic and progressive proteoglycan-induced arthritis in BALB/c mice. TCR-transgenic proteoglycan-specific T(IL-10) cells ameliorated arthritis, whereas T(IL-10) cells with specificity for OVA had no effect, showing the impact of Ag-specific targeting of inflammation. Furthermore, proteoglycan-specific T(IL-10) cells suppressed autoreactive proinflammatory T and B cells, as T(IL-10) cells caused a reduced expression of IL-2, TNF-alpha, and IL-17 and a diminished proteoglycan-specific IgG2a Ab response. Moreover, proteoglycan-specific T(IL-10) cells promoted IL-10 expression in recipients but did not ameliorate arthritis in IL-10-deficient mice, indicating that T(IL-10) cells suppress inflammation by propagating the endogenous regulatory IL-10 response in treated recipients. This is the first demonstration that such targeted suppression of proinflammatory lymphocyte responses in chronic autoimmunity by IL-10-transduced T cells specific for a natural Ag can occur via the endogenous regulatory IL-10 response.


Assuntos
Artrite Reumatoide/imunologia , Artrite Reumatoide/terapia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/transplante , Interleucina-10/metabolismo , Transferência Adotiva , Animais , Autoantígenos/análise , Autoantígenos/imunologia , Cartilagem/imunologia , Doença Crônica , Citocinas/metabolismo , Imunoglobulina G/metabolismo , Terapia de Imunossupressão , Interleucina-10/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Proteoglicanas/análise , Proteoglicanas/imunologia , Retroviridae/genética , Transdução Genética
16.
Arthritis Rheum ; 54(8): 2423-33, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16869010

RESUMO

OBJECTIVE: To better understand the role of antigen (arthritogenic epitope)-specific T cells in the development of autoimmune arthritis. METHODS: A transgenic (Tg) mouse expressing the T cell receptor (TCR) Valpha1.1 and V(beta)4 chains specific for a dominant arthritogenic epitope (designated 5/4E8) of human cartilage proteoglycan (HuPG) aggrecan was generated. This TCR-Tg mouse strain was backcrossed into the PG-induced arthritis (PGIA)-susceptible BALB/c strain and tested for arthritis incidence and severity. RESULTS: CD4+ TCR-Tg T cells carried functionally active TCR specific for a dominant arthritogenic epitope of HuPG (5/4E8). T cells of naive TCR-Tg mice were in an activated stage, since the in vitro response to HuPG or to peptide stimulation induced interferon-gamma and interleukin-4 production. TCR-Tg mice uniformly, without exception, developed severe and progressive polyarthritis, even without adjuvant. Inflamed joints showed extensive cartilage degradation and bone erosions, similar to that seen in the arthritic joints of wild-type BALB/c mice with PGIA. Spleen cells from both naive and HuPG-immunized arthritic TCR-Tg mice could adoptively transfer arthritis when injected into syngeneic BALB/c.SCID recipient mice. CONCLUSION: TCR-Tg BALB/c mice display increased arthritis susceptibility and develop aggravated disease upon in vivo antigen stimulation. This model using TCR-Tg mice is a novel and valuable research tool for studying mechanisms of antigen (arthritogenic epitope)-driven regulation of arthritis and understanding how T cells recognize autoantigen in the joints. This type of mouse could also be used to develop new immunomodulatory strategies in T cell-mediated autoimmune diseases.


Assuntos
Artrite Experimental/genética , Artrite Reumatoide/genética , Proteoglicanas de Sulfatos de Condroitina/genética , Epitopos de Linfócito T/genética , Proteínas da Matriz Extracelular/genética , Predisposição Genética para Doença , Lectinas Tipo C/genética , Receptores de Antígenos de Linfócitos T/genética , Transferência Adotiva , Agrecanas , Animais , Artrite Experimental/imunologia , Artrite Experimental/patologia , Artrite Reumatoide/imunologia , Artrite Reumatoide/patologia , Cartilagem/imunologia , Cartilagem/patologia , Transplante de Células , Proteoglicanas de Sulfatos de Condroitina/imunologia , Epitopos de Linfócito T/imunologia , Proteínas da Matriz Extracelular/imunologia , Feminino , Humanos , Endogamia , Lectinas Tipo C/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos SCID , Camundongos Transgênicos , Receptores de Antígenos de Linfócitos T/imunologia , Baço/citologia , Baço/imunologia , Linfócitos T/imunologia
17.
J Autoimmun ; 25(3): 172-80, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16257179

RESUMO

Proteoglycan (PG)-induced arthritis (PGIA), a murine model for rheumatoid arthritis (RA), is driven by antigen (PG)-specific T and B cell activation. In order to analyze the pathogenic role of antigen-specific T cells in the development of autoimmune arthritis, we have generated a transgenic (Tg) mouse. The CD4(+) T cells of this TCR-5/4E8-Tg line express a functional T cell receptor (TCR) composed of the Valpha1.1 and Vbeta4 chains with specificity for the dominant arthritogenic T cell epitope of human cartilage PG. Adoptive transfer of naive TCR-5/4E8-Tg cells induced arthritis with severe clinical symptoms in syngeneic immunodeficient BALB/c.RAG2(-/-) mice. In vivo activation of TCR-5/4E8-Tg CD4(+)Vbeta4(+) cells with cartilage PG seemed to be critical for arthritis induction. Arthritis never developed after transfer of naive wild-type cells. The arthritis was characterized as a chronic progressive disease with intermittent spontaneous exacerbations and remissions. Inflamed joints showed extensive cartilage damage and bone erosions leading to massive ankylosis in peripheral joints. These PG epitope-specific TCR-5/4E8-Tg mice can be valuable research tools for studying antigen-driven T cell regulation in arthritis, and migration of T cells to the joints. In addition the model may be used for the development of immune modulating strategies in T cell-mediated autoimmune diseases.


Assuntos
Artrite Experimental/imunologia , Cartilagem Articular/imunologia , Técnicas de Transferência de Genes , Ativação Linfocitária/imunologia , Proteoglicanas/imunologia , Receptores de Antígenos de Linfócitos T alfa-beta/biossíntese , Linfócitos T/imunologia , Sequência de Aminoácidos , Animais , Artrite Experimental/genética , Cartilagem Articular/metabolismo , Clonagem Molecular , Humanos , Hibridomas , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Dados de Sequência Molecular , Proteoglicanas/metabolismo , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Fase de Repouso do Ciclo Celular/genética , Linfócitos T/metabolismo , Linfócitos T/transplante
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA