RESUMO
The investigation of layered intermetallic compounds containing light elements like hydrogen has great potential for superconductivity. We studied the insertion of carbon atoms in CeScSi-type intermetallics (an ordered variant of the La2Sb structure type), and here, we report the new carbide NdScSiC0.5. Carbon insertion keeps the pristine compound's space group, I4/mmm, but causes an anisotropic expansion of the unit cell with an increase in the a parameter and a decrease of the c parameter. X-ray and neutron diffraction measurements indicate the existence of a NdScSiCx solid solution (0.2 < x ≤ 0.5) with carbon atoms occupying only the Sc4Nd2 octahedral sites while leaving the Nd4 tetrahedral sites vacant. Magnetization measurements unveil a linear reduction of the ferromagnetic ordering temperature from TC = â¼171 K to â¼50 K with increasing carbon content. The ferromagnetic structures of the pristine NdScSi and the filled NdScSiC0.5 have been determined from neutron diffraction measurements. Finally, we discuss the effect of carbon versus hydrogen insertion on electronic and magnetic properties based on density functional theory calculations. Although the unpaired spin density channels between Nd and Sc atoms (responsible of the high Curie temperature in NdScSi) are reduced upon carbon insertion, the strong Nd-C interaction, linked to a reduced c lattice parameter in NdScSiC0.5, ensures a strong magnetic coupling between the Nd double layer along the c axis and the ferromagnetic order is preserved.
RESUMO
The intermetallic NdNiMg15 is the Mg-richest phase (more than 88 atom % of Mg) discovered in the Mg-Nd-Ni system. Its structure was determined by X-ray diffraction on single crystal with the following crystal data: tetragonal system, P4/ nmm, Z = 2, a = 10.0602(1) Å, c = 7.7612(2) Å, dcalc = 2.40 g·cm-3. Its structure is made of a three-dimensional framework of magnesium atoms showing channels filled by one-dimensional chain consisting of alternating Nd and Ni atoms along the c-axis. Anti-ferromagnetic ordering was observed with TN = 9 K, which is remarkably high considering the long distances between magnetic atoms, that is, Nd atoms. The effective magnetic moment µeff is equal to 3.58 µB, which is consistent with magnetic Nd3+ ions and weakly or nonmagnetic Ni atoms. Below TN, the M( H) curves show field-induced metamagnetic transitions at critical fields increasing with decreasing temperatures. The magnetic structure of NdNiMg15 was determined from neutron powder diffraction data by considering the propagation vector k = (1/2 1/2 0). This magnetic structure consists in ferromagnetic chains along the c-axis of Nd atoms carrying moments, only separated by Ni atoms. The chains are ferromagnetically coupled within planes perpendicular to the [110] direction, and these planes are anti-ferromagnetically coupled to neighboring planes forming a checkerboard-like magnetic structure.
RESUMO
Intermetallic phases have been investigated with respect to their ability to accept small atoms in interstitial sites without changing the host structure. Among those, the intermetallic compounds crystallizing in the tetragonal CeScSi-type structure are able to absorb hydrogen atoms. These compounds are of particular interest because they can show electride-like character and, therefore, can be exploited as new catalysts. Here we report the case of GdScGe which uptakes hydrogen at 623 K and under a H2 gas pressure between 0.5 and 4 MPa. The formation of the hydride GdScGeH, with H atoms entering into the [Gd4] tetrahedra, preserves the host structure but induces an anisotropic volume expansion with a strong increase of the c-parameter and a slight decrease of the a-parameter. Interestingly, we show for the first time for this family of materials that hydrogen insertion reduces the dimensionality of the magnetic and transport properties from 3D to quasi-2D which results in a vanishing of the ferromagnetic order ( TC = 350 K for GdScGe) and a change of the metallic conduction behavior to a nonmetallic one. As evidenced by density functional theory calculations, such drastic effects are accounted for through the Gd-H chemical bonding effect and the oxidizing effect of H whereas the volume expansion plays only a minor role.
RESUMO
We report the discovery of a new solid solution Gd2(Co3-xSix) with 0.29 < x < 0.50 in the Gd-Co-Si ternary system. Members of this solid solution crystallize with the La2Ni3-type structure and correspond to the stabilization of "Gd2Co3" through silicon substitution. The structure of the member Gd2(Co2.53(3)Si0.47) was determined by X-ray diffraction on a single crystal. It crystallizes with the space group Cmce and cell parameters a = 5.3833(4), b = 9.5535(6), and c = 7.1233(5) Å. Co/Si mixing is observed on two crystallographic positions. All compounds studied in the solid solution present a ferrimagnetic order with a strong composition-dependent Curie temperature TC with 280 K < TC < 338 K. The magnetocaloric effect, which amounts to around 1.7 J K(-1) kg(-1) for ΔH = 2 T, is interestingly tunable around room temperature over a temperature span of 60 K through only 4-5% of composition change.
RESUMO
Intermetallics represent an important family of compounds, in which insertion of light elements (H, B, C, N) has been widely explored for decades to synthesize novel phases and promote functional materials such as permanent magnets or magnetocalorics. Fluorine insertion, however, has remained elusive so far since the strong reactivity of this atypical element, the most electronegative one, tends to produce the chemical decomposition of these systems. Here, we introduce a topochemical method to intercalate fluorine atoms into intermetallics, using perfluorocarbon reactant with covalent C-F bonds. We demonstrate the potential of this approach with the synthesis of non-stoichiometric mixed anion (Si-F) LaFeSiFx single-crystals, which are further shown to host FeSi-based superconductivity. Fluorine topochemistry on intermetallics is thus proven to be an effective route to provide functional materials where the coexistence of ionic and metallo-covalent blocks, and their interactions through inductive effects, is at the root of their functional properties.
RESUMO
The hydride NdCoSiH obtained by exposure at 523 K of the ternary antiferromagnet NdCoSi under a pressure of 4 MPa of hydrogen crystallizes in the tetragonal ZrCuSiAs-type structure where H atoms occupy the tetrahedral [Nd(4)] site. The hydrogenation induces an increase in the unit cell volume close to 6%. The investigation of NdCoSiH by magnetization measurements reveals its ferromagnetic behavior below T(C) = 20.5(5) K. Neutron powder diffraction shows that the T(C) temperature is associated with a ferromagnetic arrangement of the Nd moments (2.3(2) mu(B) at 1.5 K) parallel to the c axis as observed for NdFeSi. The magnetic properties, magnetic structure, and the value of the Nd ordered magnetic moment evidenced for NdCoSiH are discussed using both band structure calculations and a comparison with the behavior of NdCoSi and NdFeSi.