Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 56(19): 14120-14132, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36151962

RESUMO

Iron (Fe) minerals constitute a major control on organic carbon (OC) storage in soils and sediments. While previous research has mainly targeted Fe (oxyhydr)oxides, the impact of Fe sulfides and their subsequent oxidation on OC dynamics remains unresolved in redox-fluctuating environments. Here, we investigated the impact of dissolved organic matter (DOM) on FeS oxidation and how FeS and its oxidation may alter the retention and nature of DOM. After the anoxic reaction of DOM with FeS, FeS preferentially removed high-molecular-weight and nitrogen-rich compounds and promoted the formation of aqueous sulfurized organic molecules, according to Fourier transform-ion cyclotron resonance-mass spectrometry (FT-ICR-MS) analysis. When exposed to O2, FeS oxidized to nanocrystalline lepidocrocite and additional aqueous sulfurized organic compounds were generated. The presence of DOM decreased the particle size of the resulting nano-lepidocrocite based on Mössbauer spectroscopy. Following FeS oxidation, most solid-phase OC remained associated with the newly formed lepidocrocite via a monodentate chelating mechanism (based on FTIR analysis), and FeS oxidation caused only a slight increase in the solubilization of solid-phase OC. Collectively, this work highlights the under-appreciated role of Fe sulfides and their oxidation in driving OC transformation and preservation.


Assuntos
Carbono , Matéria Orgânica Dissolvida , Carbono/análise , Compostos Férricos , Ferro , Minerais , Nitrogênio/análise , Compostos de Nitrogênio , Oxirredução , Óxidos/análise , Solo , Sulfetos , Água
2.
Appl Environ Microbiol ; 87(20): e0120121, 2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34347511

RESUMO

Periphyton occurs widely in shallow-water ecosystems such as paddy fields and plays a critical part in regulating local phosphorus cycling. As such, understanding the mechanisms of biofilms' response to environmental phosphate (P) variability may lead to better perceptions of P utilization and retention in rice farms. The present study aims at exploring the biological and biochemical processes underlying periphyton's P buffering capability through examining changes in community structure, phosphorus uptake and storage, and molecular makeup of the exometabolome at different levels of P availability. Under stressed (both excessive and scarce) phosphorus conditions, we found increased populations of bacterial genera capable of transforming orthophosphate to polyphosphate, as well as mixotrophic algae, that can survive through phagotrophy. These results were corroborated by observed polyphosphate buildup under low- and high-P treatment. Exometabolomic analyses further revealed that periphytic organisms may substitute sulfur (S)-containing lipids for phospholipids, use siderophores to dissolve iron (hydr)oxides to scavenge adsorbed P, and synthesize auxins to resist phosphorus starvation. These findings not only shed light on the mechanistic insights responsible for driving the periphytic P buffer but attest to the ecological roles of periphyton in aiding plants such as rice to overcome P limitations in the natural environment. IMPORTANCE The ability of periphyton to buffer environmental P in shallow aquatic ecosystems may be a natural lesson on P utilization and retention in paddy fields. This work revealed the routes and tools through which periphytic organisms adapt to and regulate ambient P fluctuation. The mechanistic understanding further implicates that the biofilm may serve rice plants to alleviate P stress. Additional results from extracellular metabolite analyses suggest the dissolved periphytic exometabolome can be a valuable nutrient source for soil microbes and plants to reduce biosynthetic costs. These discoveries have the potential to improve our understanding of biogeochemical cycling of phosphorus in general and to refine P management strategies for rice farms in particular.


Assuntos
Perifíton/fisiologia , Fosfatos/metabolismo , Fósforo/metabolismo , Poluentes Químicos da Água/metabolismo , Biofilmes , Disponibilidade Biológica , Metaboloma , Oryza , Perifíton/genética
3.
Cryst Growth Des ; 15(1): 129-136, 2015 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-25709560

RESUMO

We investigated the roles of three proteins associated with the formation of otoconia including fetuin A, osteopontin (OPN), and otoconin 90 (OC90). In situ atomic force microscopy (AFM) studies of the effects of these proteins on the growth of atomic steps on calcite surfaces were performed to obtain insight into their effects on the growth kinetics. We also used scanning electron microscopy to examine the effects of these proteins on crystal morphology. All three proteins were found to be potent inhibitors of calcite growth, although fetuin A promoted growth at concentrations below about 40 nM and only became an inhibitor at higher concentrations. We then used in situ optical microscopy to observe calcite nucleation on films of these proteins adsorbed onto mica surfaces. By measuring the calcite nucleation rate as a function of supersaturation, the value of the interfacial energy that controls the free energy barrier to heterogeneous nucleation was determined for each protein. OPN and OC90 films led to significantly reduced interfacial energies as compared to the value for homogeneous calcite nucleation in bulk solution. The value for fetuin A was equal to that for bulk solution within experimental error. Zeta potential measurements showed all of the proteins possessed negative surface charge and varied in magnitude according to sequence fetuin A > OC90 > OPN. In addition, the interfacial energies exhibited an inverse scaling with the zeta potential. In analogy to previous measurements on polysaccharide films, this scaling indicates the differences between the proteins arise from the effect of protein surface charge on the solution-substrate interfacial energy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA