Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Physiol ; 194(3): 1870-1888, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-37930281

RESUMO

Homeodomain-leucine zipper (HD-Zip) I transcription factors are crucial for plant responses to drought, salt, and cold stresses. However, how they are associated with thermotolerance remains mostly unknown. We previously demonstrated that lily (Lilium longiflorum) LlHB16 (HOMEOBOX PROTEIN 16) promotes thermotolerance, whereas the roles of other HD-Zip I members are still unclear. Here, we conducted a transcriptomic analysis and identified a heat-responsive HD-Zip I gene, LlHOX6 (HOMEOBOX 6). We showed that LlHOX6 represses the establishment of basal thermotolerance in lily. LlHOX6 expression was rapidly activated by high temperature, and its protein localized to the nucleus. Heterologous expression of LlHOX6 in Arabidopsis (Arabidopsis thaliana) and overexpression in lily reduced their basal thermotolerance. In contrast, silencing LlHOX6 in lily elevated basal thermotolerance. Cooverexpressing or cosilencing LlHOX6 and LlHB16 in vivo compromised their functions in modulating basal thermotolerance. LlHOX6 interacted with itself and with LlHB16, although heterologous interactions were stronger than homologous ones. Notably, LlHOX6 directly bounds DNA elements to repress the expression of the LlHB16 target genes LlHSFA2 (HEAT STRESS TRANSCRIPTION FACTOR A2) and LlMBF1c (MULTIPROTEIN BRIDGING FACTOR 1C). Moreover, LlHB16 activated itself to form a positive feedback loop, while LlHOX6 repressed LlHB16 expression. The LlHOX6-LlHB16 heterooligomers exhibited stronger DNA binding to compete for LlHB16 homooligomers, thus weakening the transactivation ability of LlHB16 for LlHSFA2 and LlMBF1c and reducing its autoactivation. Altogether, our findings demonstrate that LlHOX6 interacts with LlHB16 to limit its transactivation, thereby impairing heat stress responses in lily.


Assuntos
Arabidopsis , Lilium , Termotolerância , Arabidopsis/genética , DNA , Resposta ao Choque Térmico , Proteínas de Homeodomínio/genética , Lilium/genética , Termotolerância/genética , Zíper de Leucina/genética
2.
New Phytol ; 241(5): 2124-2142, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38185817

RESUMO

Heat stress transcription factors (HSFs) are core regulators of plant heat stress response. Much research has focused on class A and B HSFs, leaving those of class C relatively understudied. Here, we reported a lily (Lilium longiflorum) heat-inducible HSFC2 homology involved in thermotolerance. LlHSFC2 was located in the nucleus and cytoplasm and exhibited a repression ability by binding heat stress element. Overexpression of LlHSFC2 in Arabidopsis, tobacco (Nicotiana benthamiana), and lily, all increased the thermotolerance. Conversely, silencing of LlHSFC2 in lily reduced its thermotolerance. LlHSFC2 could interact with itself, or interact with LlHSFA1, LlHSFA2, LlHSFA3A, and LlHSFA3B of lily, AtHSFA1e and AtHSFA2 of Arabidopsis, and NbHSFA2 of tobacco. LlHSFC2 interacted with HSFAs to accelerate their transactivation ability and act as a transcriptional coactivator. Notably, compared with the separate LlHSFA3A overexpression, co-overexpression of LlHSFC2/LlHSFA3A further enhanced thermotolerance of transgenic plants. In addition, after suffering HS, the homologous interaction of LlHSFC2 was repressed, but its heterologous interaction with the heat-inducible HSFAs was promoted, enabling it to exert its co-activation effect for thermotolerance establishment and maintenance. Taken together, we identified that LlHSFC2 plays an active role in the general balance and maintenance of heat stress response by cooperating with HSFAs, and provided an important candidate for the enhanced thermotolerance breeding of crops and horticulture plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Lilium , Termotolerância , Lilium/metabolismo , Arabidopsis/metabolismo , Proteínas de Plantas/metabolismo , Melhoramento Vegetal , Resposta ao Choque Térmico , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/metabolismo
3.
Plant Cell Environ ; 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39073746

RESUMO

Heat stress transcription factors (HSFs) are core factors of plants in response to heat stress (HS), but their regulatory network is complicated and remains elusive in a large part, especially HSFBs. In this study, we reported that the LlERF012-LlHSFA1 module participates in heat stress response (HSR) by directly regulating HSF pathway in lily (Lilium longiflorum). LlHSFB1 was confirmed as a positive regulator in lily thermotolerance and a heat-inducible AP2/ERF member LlERF012 (Ethylene Response Factor 012) was further identified to be a direct trans-activator of LlHSFB1. Overexpression of LlERF012 elevated the thermotolerance of transgenic Arabidopsis and lily, but silencing LlERF012 reduced thermotolerance in lily. Further analysis showed LlERF012 interacted with LlHSFA1, which led to enhanced transactivation activity and DNA-binding capability of LlERF012. In addition, LlERF012 also directly activated the expression of LlHSFA1 by binding its promoter. As expected, we found that LlERF012 bound the promoters of LlHSFA2, LlHSFA3A, and LlHSFA3B to stimulate their expression, and LlERF012-LlHSFA1 interaction enhanced these activation effects. Overall, our data suggested that LlERF012 was a key factor for lily thermotolerance and the LlERF012-LlHSFA1 interaction synergistically regulated the activity of the HSF pathway including the class A and B members, which might be of great significance for coordinating the functions of different HSFs.

4.
Mol Genet Genomics ; 298(6): 1545-1557, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37910265

RESUMO

Petal spots are widespread in plants, they are important for attracting pollinators and as economic traits in crop breeding. However, the genetic and developmental control of petal spots has seldom been investigated. To further clarify the development of petal spots formation, we performed comparative transcriptome analysis of Lilium davidii var. unicolor and Lilium davidii petals at the full-bloom stage. In comparison with the parental species L. davidii, petals of the lily variety L. davidii var. unicolor do not have the distinct anthocyanin spots. We show that among 7846 differentially expressed genes detected, LdMYB12 was identified as a candidate gene contributing to spot formation in lily petals. The expression level of LdMYB12 in the petals of L. davidii was higher than that in L. davidii var. unicolor petals. Moreover, overexpression of LdMYB12 led to the appearance of spots on the petals of L. davidii var. unicolor, accompanied by increased expression of anthocyanin synthesis-related genes. Taken together, these results indicate that abnormal expression of LdMYB12 contributes to petal spot deficiency in L. davidii var. unicolor.


Assuntos
Lilium , Lilium/genética , Lilium/metabolismo , Antocianinas/metabolismo , Melhoramento Vegetal , Perfilação da Expressão Gênica , Transcriptoma/genética
5.
J Exp Bot ; 74(3): 945-963, 2023 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-36322671

RESUMO

The NTL (NAC with transmembrane motif 1-like) transcription factors with a conserved transmembrane motif are members of the NAC family and are important in plant development and in response to stress. However, knowledge of their regulatory pathways is scarce, especially under heat stress. Here, we cloned and identified a novel lily (Lilium longiflorum) NTL gene, LlNAC014, that increases thermotolerance. High temperature repressed LlNAC014 expression but activated its protein. LlNAC014 contained a typical transmembrane motif at its far C-terminus and was normally located on membranes, but under heat stress it entered the nucleus as a transcription factor. LlNAC014 also has a transactivation domain at its C-terminus, and its active form, LlNAC014ΔC, could function as a trans-activator in both yeast and plant cells. LlNAC014ΔC overexpression in lily and Arabidopsis increased thermotolerance, and also caused growth defects; silencing LlNAC014 in lily decreased thermotolerance. LlNAC014ΔC could constitutively activate the heat stress response by inducing the expression of heat-responsive genes, some of which were dependent on the HSF (heat stress transcription factor) pathway. Further analysis showed that LlNAC014 was a direct regulator of the DREB2-HSFA3 module, and bound to the CTT(N7)AAG element in the promoters of LlHSFA3A, LlHSFA3B, and LlDREB2B to activate their expression. Thus, LlNAC014 increased thermotolerance by sensing high temperature and translocating to the nucleus to activate the DREB2-HSFA3 module.


Assuntos
Arabidopsis , Lilium , Termotolerância , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Termotolerância/genética , Lilium/genética , Proteínas de Ligação a DNA/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Fatores de Transcrição de Choque Térmico/genética , Fatores de Transcrição de Choque Térmico/metabolismo , Arabidopsis/metabolismo , Plantas Geneticamente Modificadas/genética
6.
Ann Bot ; 131(1): 215-228, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-35639931

RESUMO

BACKGROUND AND AIMS: Tandemly repeated DNA and transposable elements represent most of the DNA in higher plant genomes. High-throughput sequencing allows a survey of the DNA in a genome, but whole-genome assembly can miss a substantial fraction of highly repeated sequence motifs. Chrysanthemum nankingense (2n = 2x = 18; genome size = 3.07 Gb; Asteraceae), a diploid reference for the many auto- and allopolyploids in the genus, was considered as an ancestral species and serves as an ornamental plant and high-value food. We aimed to characterize the major repetitive DNA motifs, understand their structure and identify key features that are shaped by genome and sequence evolution. METHODS: Graph-based clustering with RepeatExplorer was used to identify and classify repetitive motifs in 2.14 millions of 250-bp paired-end Illumina reads from total genomic DNA of C. nankingense. Independently, the frequency of all canonical motifs k-bases long was counted in the raw read data and abundant k-mers (16, 21, 32, 64 and 128) were extracted and assembled to generate longer contigs for repetitive motif identification. For comparison, long terminal repeat retrotransposons were checked in the published C. nankingense reference genome. Fluorescent in situ hybridization was performed to show the chromosomal distribution of the main types of repetitive motifs. KEY RESULTS: Apart from rDNA (0.86 % of the total genome), a few microsatellites (0.16 %), and telomeric sequences, no highly abundant tandem repeats were identified. There were many transposable elements: 40 % of the genome had sequences with recognizable domains related to transposable elements. Long terminal repeat retrotransposons showed widespread distribution over chromosomes, although different sequence families had characteristic features such as abundance at or exclusion from centromeric or subtelomeric regions. Another group of very abundant repetitive motifs, including those most identified as low-complexity sequences (9.07 %) in the genome, showed no similarity to known sequence motifs or tandemly repeated elements. CONCLUSIONS: The Chrysanthemum genome has an unusual structure with a very low proportion of tandemly repeated sequences (~1.02 %) in the genome, and a high proportion of low-complexity sequences, most likely degenerated remains of transposable elements. Identifying the presence, nature and genomic organization of major genome fractions enables inference of the evolutionary history of sequences, including degeneration and loss, critical to understanding biodiversity and diversification processes in the genomes of diploid and polyploid Chrysanthemum, Asteraceae and plants more widely.


Assuntos
Chrysanthemum , Retroelementos , Hibridização in Situ Fluorescente , Chrysanthemum/genética , Elementos de DNA Transponíveis , Sequências Repetitivas de Ácido Nucleico , Genômica , Genoma de Planta , Plantas/genética , Evolução Molecular
7.
Plant Cell Physiol ; 63(11): 1729-1744, 2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36130232

RESUMO

HD-Zip I transcription factors play important roles in plant development and response to abiotic stresses; however, their roles in thermotolerance are largely unknown. Through transcriptome analysis in lily (Lilium longiflorum), we isolated and identified a HD-Zip I gene differentially expressed at high temperatures, LlHB16, which belongs to the ß2 subgroup and positively regulates thermotolerance. The expression of LlHB16 was rapidly and continuously activated by heat stress. LlHB16 protein localized to the nucleus and exhibited transactivation activity in both plant and yeast cells, and its C-terminus contributed to its transcriptional activity. Overexpressing LlHB16 in Arabidopsis and lily improved thermotolerance and activated the expression of heat-related genes in both plants, especially that of HSFA2 and MBF1c. In addition, LlHB16 overexpression in Arabidopsis also caused growth defects, delayed flowering and abscisic acid (ABA) insensitivity. Further analysis revealed that LlHB16 directly binds to the promoters of LlHSFA2 and LlMBF1c and activates their expressions. Similarly, the expression of AtHSFA2 and AtMBF1c was also elevated in LlHB16 transgenic Arabidopsis lines. Together, our findings demonstrate that LlHB16 participates in the establishment of thermotolerance involved in activating LlHSFA2 and LlMBF1c, and LlHB16 overexpression resulted in ABA insensitivity in transgenic plants, suggesting that LlHB16 links the basal heat-responsive pathway and ABA signal to collaboratively regulate thermotolerance.


Assuntos
Arabidopsis , Lilium , Termotolerância , Lilium/genética , Lilium/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Arabidopsis/metabolismo , Termotolerância/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo
8.
J Exp Bot ; 73(1): 197-212, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34453430

RESUMO

Embryo abortion often occurs during distant hybridization events. Apetala 2/ethylene-responsive factor (AP2/ERF) proteins are key transcription factor (TF) regulators of plant development and stress resistance, but their roles in hybrid embryo development are poorly understood. In this study, we isolated a novel AP2/ERF TF, CmERF12, from chrysanthemum and show that it adversely affects embryo development during distant hybridization. Transcriptome and real-time quantitative PCR demonstrate that CmERF12 is expressed at significantly higher levels in aborted ovaries compared with normal ones. CmERF12 localizes to the cell nucleus and contains a conserved EAR motif that mediates its transcription repressor function in yeast and plant cells. We generated artificial microRNA (amiR) CmERF12 transgenic lines of Chrysanthemum morifolium var. 'Yuhualuoying' and conducted distant hybridization with the wild-type tetraploid, Chrysanthemum nankingense, and found that CmERF12-knock down significantly promoted embryo development and increased the seed-setting rates during hybridization. The expression of various genes related to embryo development was up-regulated in developing ovaries from the cross between female amiR-CmERF12 C. morifolium var. 'Yuhualuoying'× male C. nankingense. Furthermore, CmERF12 directly interacted with CmSUF4, which is known to affect flower development and embryogenesis, and significantly reduced its ability to activate its target gene CmEC1 (EGG CELL1). Our study provides a novel method to overcome barriers to distant hybridization in plants and reveals the mechanism by which CmERF12 negatively affects chrysanthemum embryo development.


Assuntos
Chrysanthemum , Chrysanthemum/genética , Chrysanthemum/metabolismo , Desenvolvimento Embrionário , Regulação da Expressão Gênica de Plantas , Hibridização Genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo
9.
Int J Mol Sci ; 23(8)2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35457184

RESUMO

Functional lilies are a group of edible lily cultivars with great potential for landscape application. Low-temperature storage can significantly improve their taste, but the knowledge of this process is largely unknown. In this study, we used the functional lilies 'Fly Shaohua' and 'Fly Tiancheng' as materials. Through physiological observation and transcriptome analysis during the bulbs' cold storage, it was found that the starch degradation and sucrose accumulation in bulbs contributed to taste improvement. After 60 d of cold storage, the sucrose accumulation was highest and the starch content was lower in the bulbs, suggesting this time-point was optimal for consumption. Accompanying the fluctuation of sucrose content during cold storage, the enzyme activities of sucrose phosphate synthase and sucrose synthase for sucrose synthesis were increased. Transcriptome analysis showed that many differentially expressed genes (DEGs) were involved in the starch and sucrose metabolism pathway, which might promote the conversion of starch to sucrose in bulbs. In addition, the DEGs involved in dormancy and stress response were also determined during cold storage, which might explain the decreased sucrose accumulation with extended storage time over 60 d due to the energy consumption for dormancy release. Taken together, our results indicated sucrose accumulation was a main factor in the taste improvement of lily bulbs after cold storage, which is attributable to the different gene expression of starch and sucrose metabolism pathways in this process.


Assuntos
Lilium , Temperatura Baixa , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Lilium/genética , Amido/metabolismo , Sacarose/metabolismo
10.
Plant Cell Physiol ; 62(11): 1687-1701, 2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34370862

RESUMO

Male sterility, as a common reproductive characteristic in plants, plays an important role in breeding, in which pollen abortion is a key factor leading to male sterility. Here, based on a low expression level gene CmACOS5 in transcriptome of pollen abortive chrysanthemum, a new transcription factor CmLBD2 of the Lateral Organ Boundaries Domain family, which could bind the promoter of CmACOS5 by yeast one-hybrid library was screened. This study revealed the origin and expression pattern of CmLBD2 in chrysanthemum and verified the functions of two genes in pollen development by transgenic means. Inhibiting the expression of CmACOS5 or CmLBD2 can lead to a large reduction in pollen and even abortion in chrysanthemum. Using yeast one-/two-hybrid, electrophoretic mobility shift assays, and luciferase reporter assays, it was verified that CmLBD2 directly binds to the promoter of CmACOS5. These results suggest that LBD2 is a novel, key transcription factor regulating pollen development. This result will provide a new research background for enriching the function of LBD family proteins and also lay a new foundation for the breeding of male sterile lines and the mechanism of pollen development.


Assuntos
Chrysanthemum/crescimento & desenvolvimento , Chrysanthemum/genética , Coenzima A Ligases/genética , Proteínas de Plantas/genética , Pólen/crescimento & desenvolvimento , Fatores de Transcrição/genética , Chrysanthemum/enzimologia , Chrysanthemum/metabolismo , Coenzima A Ligases/metabolismo , Proteínas de Plantas/metabolismo , Pólen/genética , Fatores de Transcrição/metabolismo
11.
Int J Mol Sci ; 22(22)2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34830002

RESUMO

Lily (Lilium spp.) is a widely cultivated horticultural crop that has high ornamental and commercial value but also the serious problem of pollen pollution. However, mechanisms of anther dehiscence in lily remain largely unknown. In this study, the morphological characteristics of the stomium zone (SZ) from different developmental stages of 'Siberia' lily anthers were investigated. In addition, transcriptomic and metabolomic data were analyzed to identify the differentially expressed genes (DEGs) and secondary metabolites involved in stomium degeneration. According to morphological observations, SZ lysis occurred when flower buds were 6-8 cm in length and was completed in 9 cm. Transcriptomic analysis identified the genes involved in SZ degeneration, including those associated with hormone signal transduction, cell structure, reactive oxygen species (ROS), and transcription factors. A weighted co-expression network showed strong correlations between transcription factors. In addition, TUNEL (TdT-mediated dUTP nick-end labeling) assays showed that programmed cell death was important during anther SZ degeneration. Jasmonates might also have key roles in anther dehiscence by affecting the expression of the genes involved in pectin lysis, water transport, and cysteine protease. Collectively, the results of this study improve our understanding of anther dehiscence in lily and provide a data platform from which the molecular mechanisms of SZ degeneration can be revealed.


Assuntos
Lilium/genética , Metaboloma/genética , Proteínas de Plantas/genética , Transcriptoma/genética , Flores/genética , Flores/crescimento & desenvolvimento , Flores/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/genética , Lilium/crescimento & desenvolvimento , Lilium/metabolismo , Proteínas de Plantas/metabolismo , Pólen/genética , Pólen/crescimento & desenvolvimento , Pólen/metabolismo , Fatores de Transcrição/genética
12.
BMC Plant Biol ; 20(1): 86, 2020 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-32087683

RESUMO

BACKGROUND: Elevated temperature as a result of global climate warming, either in form of sudden heatwave (heat shock) or prolonged warming, has profound effects on the growth and development of plants. However, how plants differentially respond to these two forms of elevated temperatures is largely unknown. Here we have therefore performed a comprehensive comparison of multi-level responses of Arabidopsis leaves to heat shock and prolonged warming. RESULTS: The plant responded to prolonged warming through decreased stomatal conductance, and to heat shock by increased transpiration. In carbon metabolism, the glycolysis pathway was enhanced while the tricarboxylic acid (TCA) cycle was inhibited under prolonged warming, and heat shock significantly limited the conversion of pyruvate into acetyl coenzyme A. The cellular concentration of hydrogen peroxide (H2O2) and the activities of antioxidant enzymes were increased under both conditions but exhibited a higher induction under heat shock. Interestingly, the transcription factors, class A1 heat shock factors (HSFA1s) and dehydration responsive element-binding proteins (DREBs), were up-regulated under heat shock, whereas with prolonged warming, other abiotic stress response pathways, especially basic leucine zipper factors (bZIPs) were up-regulated instead. CONCLUSIONS: Our findings reveal that Arabidopsis exhibits different response patterns under heat shock versus prolonged warming, and plants employ distinctly different response strategies to combat these two types of thermal stress.


Assuntos
Arabidopsis/fisiologia , Resposta ao Choque Térmico , Temperatura Alta/efeitos adversos , Metaboloma , Transcriptoma , Arabidopsis/genética , Folhas de Planta/genética , Folhas de Planta/fisiologia , Estresse Fisiológico
13.
Plant Physiol ; 181(4): 1651-1667, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31611422

RESUMO

Heat stress transcription factors (HSFs) are central regulators of plant responses to heat stress. Their heat-induced transcriptional regulation has been extensively studied; however, their posttranscriptional and posttranslational regulation is poorly understood. In a previous study, we established that there were at least two HSFA3 homologs, LlHSFA3A and LlHSFA3B, in lily (Lilium spp.) and that these genes played distinct roles in thermotolerance. Here, we demonstrate that LlHSFA3B is alternatively spliced under heat stress to produce the heat-inducible splice variant LlHSFA3B-III We further show that LlHSFA3B-III protein localizes in the cytoplasm and nucleus, has no transcriptional activity, and specifically disturbs the protein interactions of intact HSFA3 orthologs LlHSFA3A-I and LlHSFA3B-I. Heterologous expression of LlHSFA3B-III in Arabidopsis (Arabidopsis thaliana) and Nicotiana benthamiana increased plant tolerance of salt and prolonged heat at 40°C, yet reduced plant tolerance of acute heat shock at 45°C. Conversely, heterologous expression of LlHSFA3A-I caused opposing phenotypes, which were substantially ameliorated by coexpression of LlHSFA3B-III LlHSFA3B-III interacted with LlHSFA3A-I to limit its transactivation function and temper the function of LlHSFA3A-I, thus reducing the adverse effects of excessive LlHSFA3A-I accumulation. Based on these observations, we propose a regulatory mechanism of HSFs involving heat-inducible alternative splicing and protein interaction, which might be used in strategies to promote thermotolerance and attenuate the heat stress response in crop plants.


Assuntos
Processamento Alternativo/genética , Resposta ao Choque Térmico/genética , Lilium/genética , Lilium/fisiologia , Sequência de Aminoácidos , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Temperatura Alta , Modelos Biológicos , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Ligação Proteica , Transporte Proteico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Tolerância ao Sal/genética , Frações Subcelulares/metabolismo , Termotolerância/genética , Transcrição Gênica
14.
BMC Plant Biol ; 19(1): 542, 2019 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-31805858

RESUMO

BACKGROUND: In water lily (Nymphaea) hybrid breeding, breeders often encounter non-viable seeds, which make it difficult to transfer desired or targeted genes of different Nymphaea germplasm. We found that pre-fertilization barriers were the main factor in the failure of the hybridization of Nymphaea. The mechanism of low compatibility between the pollen and stigma remains unclear; therefore, we studied the differences of stigma transcripts and proteomes at 0, 2, and 6 h after pollination (HAP). Moreover, some regulatory genes and functional proteins that may cause low pollen-pistil compatibility in Nymphaea were identified. RESULTS: RNA-seq was performed for three comparisons (2 vs 0 HAP, 6 vs 2 HAP, 6 vs 0 HAP), and the number of differentially expressed genes (DEGs) was 8789 (4680 were up-regulated), 6401 (3020 were up-regulated), and 11,284 (6148 were up-regulated), respectively. Using label-free analysis, 75 (2 vs 0 HAP) proteins (43 increased and 32 decreased), nine (6 vs 2 HAP) proteins (three increased and six decreased), and 90 (6 vs 0 HAP) proteins (52 increased and 38 decreased) were defined as differentially expressed proteins (DEPs). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses revealed that the DEGs and DEPs were mainly involved in cell wall organization or biogenesis, S-adenosylmethionine (SAM) metabolism, hydrogen peroxide decomposition and metabolism, reactive oxygen species (ROS) metabolism, secondary metabolism, secondary metabolite biosynthesis, and phenylpropanoid biosynthesis. CONCLUSIONS: Our transcriptomic and proteomic analysis highlighted specific genes, incuding those in ROS metabolism, biosynthesis of flavonoids, SAM metabolism, cell wall organization or biogenesis and phenylpropanoid biosynthesis that warrant further study in investigations of the pollen-stigma interaction of water lily. This study strengthens our understanding of the mechanism of low pollen-pistil compatibility in Nymphaea at the molecular level, and provides a theoretical basis for overcoming the pre-fertilization barriers in Nymphaea in the future.


Assuntos
Flores/fisiologia , Nymphaea/fisiologia , Melhoramento Vegetal , Proteoma/fisiologia , Transcriptoma/fisiologia , Ontologia Genética , Hibridização Genética , Nymphaea/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pólen/fisiologia
15.
Int J Mol Sci ; 20(23)2019 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-31771269

RESUMO

The lily (Lilium spp.) anther contains a lot of pollen. It is not known if lily pollen contains allergens, and therefore screening pollen allergy-related proteins and genes is necessary. The pollen development period of lily 'Siberia' was determined by microscope observation. Early mononuclear microspores and mature pollens were used as sequencing materials. The analysis of the pollen transcriptome identified differentially expressed genes (DEGs), e.g., Profilin, Phl p 7 (Polcalcin), Ole e 1, and Phl p 11, which are associated with pollen allergens. The proteome analysis positively verified a significant increase in pollen allergenic protein content. The expression levels of LoProfiilin and LoPolcalcin, annotated as allergen proteins, gradually increased in mature pollen. LoProfiilin and LoPolcalcin were cloned and their open reading frame lengths were 396 bp and 246 bp, which encoded 131 and 81 amino acids, respectively. Amino acid sequence and structure alignment indicated that the protein sequences of LoProfilin and LoPolcalcin were highly conserved. Subcellular localization analysis showed that LoProfilin protein was localized in the cell cytoplasm and nucleus. LoProfilin and LoPolcalcin were highly expressed in mature pollen at the transcriptional and protein levels. A tertiary structure prediction analysis identified LoProfilin and LoPolcalcin as potential allergens in lily pollen.


Assuntos
Alérgenos/metabolismo , Lilium/metabolismo , Pólen/metabolismo , Proteoma/metabolismo , Transcriptoma , Alérgenos/química , Alérgenos/genética , Sequência de Aminoácidos , Antígenos de Plantas/química , Antígenos de Plantas/genética , Antígenos de Plantas/metabolismo , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Regulação da Expressão Gênica de Plantas , Lilium/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pólen/genética , Estrutura Secundária de Proteína , Alinhamento de Sequência
16.
Int J Mol Sci ; 20(23)2019 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-31766739

RESUMO

Chrysanthemum (Chrysanthemum morifolium (Ramat.) Kitamura) plants have great ornamental value, but their flowers can also be a source of pollen contamination. Previously, morphological and cytological studies have shown that anthers of some chrysanthemum cultivars such as 'Qx-115' fail to dehisce, although the underlying mechanism is largely unknown. In this study, we investigated the molecular basis of anther indehiscence in chrysanthemum via transcriptome analysis of a dehiscent cultivar ('Qx-097') and an indehiscent cultivar ('Qx-115'). We also measured related physiological indicators during and preceding the period of anther dehiscence. Our results showed a difference in pectinase accumulation and activity between the two cultivars during dehiscence. Detection of de-esterified pectin and highly esterified pectin in anthers during the period preceding anther dehiscence using LM19 and LM20 monoclonal antibodies showed that both forms of pectin were absent in the stomium region of 'Qx-097' anthers but were abundant in that of 'Qx-115' anthers. Analysis of transcriptome data revealed a significant difference in the expression levels of two transcription factor-encoding genes, CmLOB27 and CmERF72, between 'Qx-097' and 'Qx-115' during anther development. Transient overexpression of CmLOB27 and CmERF72 separately in tobacco leaves promoted pectinase biosynthesis. We conclude that CmLOB27 and CmERF72 are involved in the synthesis of pectinase, which promotes the degradation of pectin. Our results lay a foundation for further investigation of the role of CmLOB27 and CmERF72 transcription factors in the process of anther dehiscence in chrysanthemum.


Assuntos
Chrysanthemum , Flores , Perfilação da Expressão Gênica , Regulação Enzimológica da Expressão Gênica/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Pectinas , Proteínas de Plantas , Poligalacturonase , Chrysanthemum/enzimologia , Chrysanthemum/genética , Flores/enzimologia , Flores/genética , Pectinas/genética , Pectinas/metabolismo , Proteínas de Plantas/biossíntese , Proteínas de Plantas/genética , Poligalacturonase/biossíntese , Poligalacturonase/genética
17.
Plant Mol Biol ; 98(3): 233-247, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30203234

RESUMO

KEY MESSAGE: Microspore degeneration at the tetrad stage is associated with tapetum degeneration retardation. Some genes and proteins related to cell senescence and death are the key factors for pollen abortion. Chrysanthemum (Chrysanthemum morifolium) is a major floriculture crop in the world, but pollen contamination is an urgent problem to be solved in chrysanthemum production. C. morifolium 'Kingfisher' is a chrysanthemum cultivar that does not contain any pollen in mature anthers, thus it is a very important material for developing chrysanthemum without pollen contamination. However, the mechanism of its pollen abortion remains unclear. In this study, the cellular and molecular mechanisms of 'Kingfisher' pollen abortion were investigated using transmission electron microscopy, RNA sequencing, isobaric tags for relative and absolute quantitation, and bioinformatics. It was found that the meiosis of microspore mother cells was normal before the tetrad stage, the microspores began to degenerate at the tetrad stage, and no microspores were observed in the anthers after the tetrad stage. In addition, transcriptomic and proteomic analyses showed that some genes and proteins related to cell senescence and death were identified to be implicated in chrysanthemum pollen abortion. These results indicated that the tetrad stage was the main period of pollen abortion, and the genes and proteins related to cell senescence and death contributed to pollen abortion. These add to our understanding of chrysanthemum pollen abortion and will be helpful for development of flowers without pollen contamination in the future.


Assuntos
Chrysanthemum/fisiologia , Pólen/fisiologia , Flores/anatomia & histologia , Flores/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Infertilidade das Plantas/genética , Pólen/citologia
18.
Int J Mol Sci ; 19(3)2018 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-29533976

RESUMO

Most chrysanthemum cultivars are self-incompatible, so it is very difficult to create pure lines that are important in chrysanthemum breeding and theoretical studies. In our previous study, we obtained a self-compatible chrysanthemum cultivar and its self-pollinated seed set was 56.50%. It was interesting that the seed set of its ten progenies ranged from 0% to 37.23%. Examination of the factors causing the differences in the seed set will lead to an improved understanding of chrysanthemum self-incompatibility, and provide valuable information for creating pure lines. Pollen morphology, pollen germination percentage, pistil receptivity and embryo development were investigated using the in vitro culture method, the paraffin section technique, scanning electron microscopy and transmission electron microscopy. Moreover, RNA sequencing and bioinformatics were applied to analyzing the transcriptomic profiles of mature stigmas and anthers. It was found that the self-pollinated seed set of "Q10-33-1①","Q10-33-1③","Q10-33-1④" and "Q10-33-1⑩" were 37.23%, 26.77%, 7.97% and 0%, respectively. The differences in fertility among four progenies were mainly attributable to differences in pollen germination percentage and pistil receptivity. Failure of the seed set in "Q10-33-1⑩" was possibly due to self-incompatibility. In the transcriptomic files, 22 potential stigma S genes and 8 potential pollen S genes were found out.


Assuntos
Chrysanthemum/genética , Infertilidade das Plantas/genética , Polinização/genética , Autoincompatibilidade em Angiospermas/genética , Chrysanthemum/fisiologia , Pólen/genética , Pólen/ultraestrutura , Transcriptoma
19.
BMC Genomics ; 17: 585, 2016 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-27506621

RESUMO

BACKGROUND: Cross breeding is the most commonly used method in chrysanthemum (Chrysanthemum morifolium) breeding; however, cross barriers always exist in these combinations. Many studies have shown that paternal chromosome doubling can often overcome hybridization barriers during cross breeding, although the underlying mechanism has seldom been investigated. RESULTS: In this study, we performed two crosses: C. morifolium (pollen receptor) × diploid C. nankingense (pollen donor) and C. morifolium × tetraploid C. nankingense. Seeds were obtained only from the latter cross. RNA-Seq and isobaric tags for relative and absolute quantitation (iTRAQ) were used to investigate differentially expressed genes and proteins during key embryo development stages in the latter cross. A previously performed cross, C. morifolium × diploid C. nankingense, was compared to our results and revealed that transcription factors (i.e., the agamous-like MADS-box protein AGL80 and the leucine-rich repeat receptor protein kinase EXS), hormone-responsive genes (auxin-binding protein 1), genes and proteins related to metabolism (ATP-citrate synthase, citrate synthase and malate dehydrogenase) and other genes reported to contribute to embryo development (i.e., LEA, elongation factor and tubulin) had higher expression levels in the C. morifolium × tetraploid C. nankingense cross. In contrast, genes related to senescence and cell death were down-regulated in the C. morifolium × tetraploid C. nankingense cross. CONCLUSIONS: The data resources helped elucidate the gene and protein expression profiles and identify functional genes during different development stages. When the chromosomes from the male parent are doubled, the genes contributing to normal embryo developmentare more abundant. However, genes with negative functions were suppressed, suggesting that chromosome doubling may epigenetically inhibit the expression of these genes and allow the embryo to develop normally.


Assuntos
Cromossomos de Plantas/genética , Chrysanthemum/genética , Perfilação da Expressão Gênica , Hibridização Genética , Proteômica , Chrysanthemum/crescimento & desenvolvimento , Anotação de Sequência Molecular , Óvulo Vegetal/genética , Óvulo Vegetal/crescimento & desenvolvimento , Ploidias , Sementes/genética , Sementes/crescimento & desenvolvimento
20.
Plant Physiol ; 167(3): 766-79, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25630437

RESUMO

Self-incompatibility (SI) is an important genetically controlled mechanism to prevent inbreeding in higher plants. SI involves highly specific interactions during pollination, resulting in the rejection of incompatible (self) pollen. Programmed cell death (PCD) is an important mechanism for destroying cells in a precisely regulated manner. SI in field poppy (Papaver rhoeas) triggers PCD in incompatible pollen. During SI-induced PCD, we previously observed a major acidification of the pollen cytosol. Here, we present measurements of temporal alterations in cytosolic pH ([pH]cyt); they were surprisingly rapid, reaching pH 6.4 within 10 min of SI induction and stabilizing by 60 min at pH 5.5. By manipulating the [pH]cyt of the pollen tubes in vivo, we show that [pH]cyt acidification is an integral and essential event for SI-induced PCD. Here, we provide evidence showing the physiological relevance of the cytosolic acidification and identify key targets of this major physiological alteration. A small drop in [pH]cyt inhibits the activity of a soluble inorganic pyrophosphatase required for pollen tube growth. We also show that [pH]cyt acidification is necessary and sufficient for triggering several key hallmark features of the SI PCD signaling pathway, notably activation of a DEVDase/caspase-3-like activity and formation of SI-induced punctate actin foci. Importantly, the actin binding proteins Cyclase-Associated Protein and Actin-Depolymerizing Factor are identified as key downstream targets. Thus, we have shown the biological relevance of an extreme but physiologically relevant alteration in [pH]cyt and its effect on several components in the context of SI-induced events and PCD.


Assuntos
Apoptose/efeitos dos fármacos , Citosol/metabolismo , Papaver/citologia , Tubo Polínico/citologia , Propionatos/farmacologia , Autoincompatibilidade em Angiospermas/efeitos dos fármacos , Actinas/metabolismo , Calcimicina/farmacologia , Cálcio/farmacologia , Caspase 3/metabolismo , Citosol/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Pirofosfatase Inorgânica/metabolismo , Ionóforos/farmacologia , Papaver/metabolismo , Peptídeo Hidrolases/metabolismo , Proteínas de Plantas/metabolismo , Tubo Polínico/efeitos dos fármacos , Solubilidade , Vacúolos/efeitos dos fármacos , Vacúolos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA