Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Analyst ; 148(14): 3226-3238, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37326420

RESUMO

The THermally Evaporated Spray for Engineered Uniform particulateS (THESEUS) production platform was developed to generate highly uniform mixed actinide oxide particles. The particulate synthesis platform builds on previous efforts and utilizes an aerosol-based technology to generate, calcine, characterize, and aggregate a monodisperse oxide phase particle product. In this study, particles comprised of uranium oxide, incorporated with varying compositions of thorium, were produced. Th/U test materials with 232Th concentrations between 1 ppm and 10%, ratioed to 238U, were successfully generated with in situ calcination at 600 °C and characterized by in situ aerodynamic particle size spectrometry and ex situ microanalytical methods. Populations of monodisperse particulates (geometric standard deviation - GSD < 1.15) with an average diameter near 1 µm were generatated and micro-Raman spectroscopy of individual particles identified U3O8 as the primary material phase for the range of Th/U samples analyzed. Single particle measurements and automated particle analyses by secondary ion mass spectrometry (SIMS) were performed. Uniform inter-particle elemental and isotopic homogeneity for uranium and thorium isotopes was characterized by SIMS, and a 232Th/238U relative sensitivity factor of 0.53 was determined. SIMS results demonstrated differences in the 232Th/238U profiling behavior for Th/U particulates with increased Th content (>1%). Despite the observed profiling behavior, single particle measurements of the 10% Th sample indicate inter-particle homogeneity. This work represents the first systematic study of Th/U microparticulate reference materials generated and intended for nuclear safeguards applications and serves as a demonstration of THESEUS to support a sustained capability for the production mixed-element particulate reference materials.

2.
Meteorit Planet Sci ; 52(11): 2322-2342, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29551884

RESUMO

High precision oxygen three-isotope ratios were measured for four mineral phases (olivine, low-Ca and high-Ca pyroxene, and plagioclase) in equilibrated ordinary chondrites (EOC) using a secondary ion mass spectrometer. Eleven EOCs were studied that cover all groups (H, L, LL) and petrologic types (4, 5, 6), including S1-S4 shock stages, as well as unbrecciated and brecciated meteorites. SIMS analyses of multiple minerals were made in close proximity (mostly <100 µm) from several areas in each meteorite thin section, to evaluate isotope exchange among minerals. Oxygen isotope ratios in each mineral become more homogenized as petrologic type increases with the notable exception of brecciated samples. In type 4 chondrites, oxygen isotope ratios of olivine and low-Ca pyroxene are heterogeneous in both δ18O and Δ17O, showing similar systematics to those in type 3 chondrites. In types 5 and 6 chondrites, oxygen isotope ratios of the four mineral phases plot along mass dependent fractionation lines that are consistent with the bulk average Δ17O of each chondrite group. The δ18O of three minerals, low-Ca and high-Ca pyroxene and plagioclase, are consistent with equilibrium fractionation at temperatures of 700-1000°C. In most cases the δ18O values of olivine are higher than those expected from pyroxene and plagioclase, suggesting partial retention of premetamorphic values due to slower oxygen isotope diffusion in olivine than pyroxene during thermal metamorphism in ordinary chondrite parent bodies.

3.
Geochim Cosmochim Acta ; 293: 544-574, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34866644

RESUMO

Magnesium stable isotope ratios and minor element abundances of five olivine particles from comet 81P/Wild 2 were examined by secondary ion mass spectrometry (SIMS). Wild 2 olivine particles exhibit only small variations in δ25Mg values from -1.0 +0.4/-0.5 ‰ to 0.6 +0.5/- 0.6 ‰ (2σ). This variation can be simply explained by mass-dependent fractionation from Mg isotopic compositions of the Earth and bulk meteorites, suggesting that Wild 2 olivine particles formed in the chondritic reservoir with respect to Mg isotope compositions. We also determined minor element abundances, and O and Mg isotope ratios of olivine grains in amoeboid olivine aggregates (AOAs) from Kaba (CV3.1) and DOM 08006 (CO3.01) carbonaceous chondrites. Our new SIMS minor element data reveal uniform, low FeO contents of ~0.05 wt% among AOA olivines from DOM 08006, suggesting that AOAs formed at more reducing environments in the solar nebula than previously thought. Furthermore, the SIMS-derived FeO contents of the AOA olivines are consistently lower than those obtained by electron microprobe analyses (~1 wt% FeO), indicating possible fluorescence from surrounding matrix materials and/or Fe,Ni-metals in AOAs during electron microprobe analyses. For Mg isotopes, AOA olivines show more negative mass-dependent fractionation (-3.8 ± 0.5‰ ≤ δ25Mg ≤ -0.2 ± 0.3‰; 2σ) relative to Wild 2 olivines. Further, these Mg isotope variations are correlated with their host AOA textures. Large negative Mg isotope fractionations in olivine are often observed in pore-rich AOAs, while those in compact AOAs tend to have near-chondritic Mg isotopic compositions. These observations indicate that pore-rich AOAs preserved their gas-solid condensation histories, while compact AOAs experienced thermal processing in the solar nebula after their condensation and aggregation. Importantly, one 16O-rich Wild 2 LIME olivine particle (T77/F50) shows negative Mg isotope fractionation (δ25Mg = -0.8 ± 0.4‰, δ26Mg = -1.4 ± 0.9‰; 2σ) relative to bulk chondrites. Minor element abundances of T77/F50 are in excellent agreement with those of olivines from pore-rich AOAs in DOM 08006. The observed similarity in O and Mg isotopes, and minor element abundances suggest that T77/F50 formed in an environment similar to AOAs, probably near the proto-Sun, and then was transported to the Kuiper belt, where comet 81P/Wild 2 likely accreted.

4.
Geochim Cosmochim Acta ; 260: 133-160, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32255837

RESUMO

Al-Mg isotope systematics of twelve FeO-poor (type I) chondrules from CR chondrites Queen Alexandra Range 99177 and Meteorite Hills 00426 were investigated by secondary ion mass spectrometry (SIMS). Five chondrules with Mg#'s of 99.0 to 99.2 and Δ17O of -4.2‰ to -5.3‰ have resolvable excess 26Mg. Their inferred (26Al/27Al)0 values range from (3.5 ± 1.3) × 10‒6 to (6.0 ± 3.9) × 10‒6. This corresponds to formation times of 2.2 (-0.5/+1.1) Myr to 2.8 (‒0.3/+0.5) Myr after CAIs, using a canonical (26Al/27Al)0 of 5.23 × 10-5, and assuming homogeneously distributed 26Al that yielded a uniform initial 26Al/27Al in the Solar System. Seven chondrules lack resolvable excess 26Mg. They have lower Mg#'s (94.2 to 98.7) and generally higher Δ17O (-0.9‰ to -4.9‰) than chondrules with resolvable excess 26Mg. Their inferred (26Al/27Al)0 upper limits range from 1.3 × 10‒6 to 3.2 × 10‒6, corresponding to formation >2.9 to >3.7 Myr after CAIs. Al-Mg isochrons depend critically on chondrule plagioclase, and several characteristics indicate the chondrule plagioclase is unaltered: (1) SIMS 27Al/24Mg depth profile patterns match those from anorthite standards, and SEM/EDS of chondrule SIMS pits show no foreign inclusions; (2) transmission electron microscopy (TEM) reveals no nanometer-scale micro-inclusions and no alteration due to thermal metamorphism; (3) oxygen isotopes of chondrule plagioclase match those of coexisting olivine and pyroxene, indicating a low extent of thermal metamorphism; and (4) electron microprobe data show chondrule plagioclase is anorthite-rich, with excess structural silica and high MgO, consistent with such plagioclase from other petrologic type 3.00-3.05 chondrites. We conclude that the resolvable (26Al/27Al)0 variabilities among chondrules studied are robust, corresponding to a formation interval of at least 1.1 Myr. Using relationships between chondrule (26Al/27Al)0, Mg#, and Δ17O, we interpret spatial and temporal features of dust, gas, and H2O ice in the FeO-poor chondrule-forming environment. Mg# ≥ 99, Δ17O ~-5‰ chondrules with resolvable excess 26Mg initially formed in an environment that was relatively anhydrous, with a dust-to-gas ratio of ~100×. After these chondrules formed, we interpret a later influx of 16O-poor H2O ice into the environment, and that dust-to-gas ratios expanded (100× to 300×). This led to the later formation of more oxidized Mg# 94-99 chondrules with higher Δ17O (-5‰ to -1‰), with low (26Al/27Al)0, and hence no resolvable excess 26Mg. We refine the mean CR chondrite chondrule formation age via mass balance, by considering that Mg# ≥ 99 chondrules generally have resolved positive (26Al/27Al)0 and that Mg# < 99 chondrules generally have no resolvable excess 26Mg, implying lower (26Al/27Al)0. We obtain a mean chondrule formation age of 3.8 ± 0.3 Myr after CAIs, which is consistent with Pb-Pb and Hf-W model ages of CR chondrite chondrule aggregates. Overall, this suggests most CR chondrite chondrules formed immediately before parent body accretion.

5.
Earth Planet Sci Lett ; 465: 145-154, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30705461

RESUMO

In order to explore the link between comet 81P/Wild 2 and materials in primitive meteorites, seven particles 5 to 15 µm in diameter from comet 81P/Wild 2 have been analyzed for their oxygen isotope ratios using a secondary ion mass spectrometer. Most particles are single minerals consisting of olivine or pyroxene with Mg# higher than 85, which are relatively minor in 81P/Wild 2 particles (~1/3 of the 16O-poor cluster). Four particles extracted from Track 149 are 16O-poor and show Δ17O (= δ17O - 0.52 × Î´18O) values from -2%0 to +1%0, similar to previous studies, while one enstatite (En99) particle shows lower Δ17O value of -7±4%o (2σ). This compositional range has not been reported among 16O-poor particles in 81P/Wild 2, but is commonly observed among chondrules in carbonaceous chondrites and in particular in CR chondrites. The distribution in Δ17O indicates that 16O-poor 81P/Wild 2 particles are most similar to chondrules (and their fragments) in the CR chondrites and Tagish Lake-like WIS91600 chondrite chondrule silicate grains, which indicates that they likely come from a reservoir with similar dust/ice ratios as CR chondrites and WIS91600. However, differences in the Mg# distribution imply that the 81P/Wild 2 reservoir was comparatively more oxidized, with a higher dust enrichment. Two nearly pure enstatite grains from track 172 are significantly enriched in 16O, with δ18O values of -51.2 ± 1.5%0 (2σ) and -43.0 ± 1.3% (2σ), respectively, and Δ17O values of -22.3 ± 1.9% (2σ) and -21.3 ± 2.3%0 (2σ), respectively. They are the first 16O-rich pyroxenes found among 81P/Wild 2 particles, with similar Δ17O values to those of 16O-rich low-iron, manganese-enriched (LIME) olivine and CAI (calcium and aluminum-rich inclusions) -like particles from 81P/Wild 2. The major element and oxygen isotopic compositions of the pyroxenes are similar to those of enstatite in amoeboid olivine aggregates (AOAs) in primitive chondrites, in which 16O-rich pyroxenes have previously been found, and thus suggest a condensation origin.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA