Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Nutr Biochem ; 24(7): 1340-8, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23333087

RESUMO

The positive regulation of insulin pathway in skeletal muscle results in increased activity of the mammalian target of rapamycin (mTOR), a positive effector of mRNA translation rate and protein synthesis. Studies that assess the activity of this protein in response to chronic high-fat diet (HFD) are scarce and controversial, and to date, there are no studies evaluating the mTOR pathway in infants exposed to gestational and postgestational HFD. This study investigated the effect of maternal HFD on skeletal muscle morphology and on phosphorylation of proteins that comprise the intracellular mTOR signaling pathway in soleus muscle of offspring at weaning. For this purpose, 10 days prior to conception, 39 female Wistar rats were randomly assigned to either control diet (CTL) or HFD. Later, rats were distributed into four groups according to gestational and postpregnancy diet: CTL/CTL (n=10), CTL/HF (n=11), HF/HF (n=10) and HF/CTL (n=8). After 21 days of lactation, pups were killed, and blood samples and soleus and gastrocnemius skeletal muscle were collected for analysis. We observed an influence of maternal postgestational diet, rather than gestational diet, in promoting an obese phenotype, characterized by body fat accumulation, insulin resistance and high serum leptin, glucose, triglycerides and cholesterol levels (P<.05). We have also detected alterations on skeletal muscle morphology--with reduced myofiber density--and impairment on S6 kinase 1 and 4E binding protein-1 phosphorylation (P<.05). These results emphasize the importance of maternal diet during lactation on muscle morphology and on physiological adaptations of infant rats.


Assuntos
Gorduras na Dieta/administração & dosagem , Músculo Esquelético/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Desmame , Animais , Composição Corporal , Feminino , Resistência à Insulina , Tamanho da Ninhada de Vivíparos , Músculo Esquelético/anatomia & histologia , Gravidez , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Wistar , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA