Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Liver Int ; 40(11): 2808-2819, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32654385

RESUMO

BACKGROUND & AIMS: Cirrhotic cardiomyopathy is a recently recognized entity, but detailed cellular and molecular mechanisms remain unclarified. We aimed to elucidate the role of myosin heavy chain isoform shifts and their relation to calcium transients in the contractile kinetics of cirrhotic rats. METHODS: Cirrhosis was induced in male Lewis Brown-Norway rats by bile duct ligation (BDL). Myosin heavy chain (MHC) isoform distribution was evaluated by gel electrophoresis. Contractile force, Ca2+ transients and cell shortening were studied at varied frequency and extracellular [Ca2+ ]. T-tubular integrity was analysed by power spectrum analysis of images of myocytes stained with di-8-ANEPPS. RESULTS: Compared with sham controls, the phenotypes of cirrhotic rats were as follows: (a) alpha-myosin heavy chain shifted to beta-MHC isoform; (b) mild loss of T-tubular integrity in myocytes; (c) a reduced maximum and rate of rise of the Ca2+ transient (max F/Fo ); (d) a reduction in both the rate of rise and fall of contraction; (e) decreased maximal force-generating capacity; (f) loss of the inotropic effect of increased stimulus frequency; (g) unchanged sensitivity of force development to varied extracellular [Ca2+ ] and (h) increased spontaneous diastolic sarcomere length fluctuations. CONCLUSION: Cardiomyocytes and ventricular trabeculae in a cirrhotic rat model showed features of typical heart failure including systolic and diastolic prolongation, impaired force-frequency relation and decreased force-generating capacity. Impaired myosin isoform shift and calcium transients are important contributory mechanisms underlying the pathogenesis of the heart failure phenotype seen in cirrhosis.


Assuntos
Cálcio , Cardiomiopatias , Animais , Cardiomiopatias/etiologia , Cirrose Hepática , Masculino , Contração Miocárdica , Miocárdio , Miosinas , Isoformas de Proteínas , Ratos , Ratos Endogâmicos Lew
2.
Biophys J ; 114(2): 343-354, 2018 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-29401432

RESUMO

Cardiac ryanodine receptors (RyR2s) are Ca2+ release channels clustering in the sarcoplasmic reticulum membrane. These clusters are believed to be the elementary units of Ca2+ release. The distribution of these Ca2+ release units plays a critical role in determining the spatio-temporal profile and stability of sarcoplasmic reticulum Ca2+ release. RyR2 clusters located in the interior of cardiomyocytes are arranged in highly ordered arrays. However, little is known about the distribution and function of RyR2 clusters in the periphery of cardiomyocytes. Here, we used a knock-in mouse model expressing a green fluorescence protein (GFP)-tagged RyR2 to localize RyR2 clusters in live ventricular myocytes by virtue of their GFP fluorescence. Confocal imaging and total internal reflection fluorescence microscopy was employed to determine and compare the distribution of GFP-RyR2 in the interior and periphery of isolated live ventricular myocytes and in intact hearts. We found tightly ordered arrays of GFP-RyR2 clusters in the interior, as previously described. In contrast, irregular distribution of GFP-RyR2 clusters was observed in the periphery. Time-lapse total internal reflection fluorescence imaging revealed dynamic movements of GFP-RyR2 clusters in the periphery, which were affected by external Ca2+ and RyR2 activator (caffeine) and inhibitor (tetracaine), but little detectable movement of GFP-RyR2 clusters in the interior. Furthermore, simultaneous Ca2+- and GFP-imaging demonstrated that peripheral RyR2 clusters with an irregular distribution pattern are functional with a Ca2+ release profile similar to that in the interior. These results indicate that the distribution of RyR2 clusters in the periphery of live ventricular myocytes is irregular and dynamic, which is different from that of RyR2 clusters in the interior.


Assuntos
Ventrículos do Coração/citologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Animais , Cálcio/metabolismo , Sobrevivência Celular , Camundongos , Transporte Proteico
3.
J Biol Chem ; 290(33): 20477-87, 2015 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-26109063

RESUMO

The cardiac Ca(2+) release channel (ryanodine receptor, RyR2) plays an essential role in excitation-contraction coupling in cardiac muscle cells. Effective and stable excitation-contraction coupling critically depends not only on the expression of RyR2, but also on its distribution. Despite its importance, little is known about the distribution and organization of RyR2 in living cells. To study the distribution of RyR2 in living cardiomyocytes, we generated a knock-in mouse model expressing a GFP-tagged RyR2 (GFP-RyR2). Confocal imaging of live ventricular myocytes isolated from the GFP-RyR2 mouse heart revealed clusters of GFP-RyR2 organized in rows with a striated pattern. Similar organization of GFP-RyR2 clusters was observed in fixed ventricular myocytes. Immunofluorescence staining with the anti-α-actinin antibody (a z-line marker) showed that nearly all GFP-RyR2 clusters were localized in the z-line zone. There were small regions with dislocated GFP-RyR2 clusters. Interestingly, these same regions also displayed dislocated z-lines. Staining with di-8-ANEPPS revealed that nearly all GFP-RyR2 clusters were co-localized with transverse but not longitudinal tubules, whereas staining with MitoTracker Red showed that GFP-RyR2 clusters were not co-localized with mitochondria in live ventricular myocytes. We also found GFP-RyR2 clusters interspersed between z-lines only at the periphery of live ventricular myocytes. Simultaneous detection of GFP-RyR2 clusters and Ca(2+) sparks showed that Ca(2+) sparks originated exclusively from RyR2 clusters. Ca(2+) sparks from RyR2 clusters induced no detectable changes in mitochondrial Ca(2+) level. These results reveal, for the first time, the distribution of RyR2 clusters and its functional correlation in living ventricular myocytes.


Assuntos
Ventrículos do Coração/metabolismo , Miócitos Cardíacos/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Animais , Cálcio/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Ventrículos do Coração/citologia , Camundongos , Camundongos Transgênicos
4.
J Physiol ; 591(17): 4301-19, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23897231

RESUMO

Despite strong suspicion that abnormal Ca(2+) handling in Purkinje cells (P-cells) is implicated in life-threatening forms of ventricular tachycardias, the mechanism underlying the Ca(2+) cycling of these cells under normal conditions is still unclear. There is mounting evidence that P-cells have a unique Ca(2+) handling system. Notably complex spontaneous Ca(2+) activity was previously recorded in canine P-cells and was explained by a mechanistic hypothesis involving a triple layered system of Ca(2+) release channels. Here we examined the validity of this hypothesis for the electrically evoked Ca(2+) transient which was shown, in the dog and rabbit, to occur progressively from the periphery to the interior of the cell. To do so, the hypothesis was incorporated in a model of intracellular Ca(2+) dynamics which was then used to reproduce numerically the Ca(2+) activity of P-cells under stimulated conditions. The modelling was thus performed through a 2D computational array that encompassed three distinct Ca(2+) release nodes arranged, respectively, into three consecutive adjacent regions. A system of partial differential equations (PDEs) expressed numerically the principal cellular functions that modulate the local cytosolic Ca(2+) concentration (Cai). The apparent node-to-node progression of elevated Cai was obtained by combining Ca(2+) diffusion and 'Ca(2+)-induced Ca(2+) release'. To provide the modelling with a reliable experimental reference, we first re-examined the Ca(2+) mobilization in swine stimulated P-cells by 2D confocal microscopy. As reported earlier for the dog and rabbit, a centripetal Ca(2+) transient was readily visible in 22 stimulated P-cells from six adult Yucatan swine hearts (pacing rate: 0.1 Hz; pulse duration: 25 ms, pulse amplitude: 10% above threshold; 1 mm Ca(2+); 35°C; pH 7.3). An accurate replication of the observed centripetal Ca(2+) propagation was generated by the model for four representative cell examples and confirmed by statistical comparisons of simulations against cell data. Selective inactivation of Ca(2+) release regions of the computational array showed that an intermediate layer of Ca(2+) release nodes with an ~30-40% lower Ca(2+) activation threshold was required to reproduce the phenomenon. Our computational analysis was therefore fully consistent with the activation of a triple layered system of Ca(2+) release channels as a mechanism of centripetal Ca(2+) signalling in P-cells. Moreover, the model clearly indicated that the intermediate Ca(2+) release layer with increased sensitivity for Ca(2+) plays an important role in the specific intracellular Ca(2+) mobilization of Purkinje fibres and could therefore be a relevant determinant of cardiac conduction.


Assuntos
Sinalização do Cálcio , Modelos Cardiovasculares , Ramos Subendocárdicos/metabolismo , Animais , Canais de Cálcio/metabolismo , Citoplasma/metabolismo , Difusão , Retículo Endoplasmático/metabolismo , Suínos , Porco Miniatura
5.
J Muscle Res Cell Motil ; 33(6): 431-7, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22752243

RESUMO

A classical paper published by Michael Barany almost 50 years ago demonstrated a tight correlation between the mechanical parameter of maximal velocity of shortening and the biochemical parameter of myosin ATPase activity in a wide spectrum of species. Here, we review the determinants of muscle dynamics by mechanical load and the relation between sarcomere shortening velocity and cross-bridge dynamics in rat myocardium containing a range of fast and slow myosin. Observations from molecular level to mechanics of the intact human heart suggest that cardiac actin-myosin kinetic properties are matched so as to optimize myocardial strain rate and allow for the maximum rate of hydraulic energy output observed during ejection in the whole ventricle.


Assuntos
Contração Miocárdica , Sarcômeros/metabolismo , Actinas/metabolismo , Animais , Miosinas Cardíacas/metabolismo , Humanos , Cinética
6.
Commun Biol ; 5(1): 183, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35233070

RESUMO

Ryanodine receptor 2 (RyR2) is abundantly expressed in the heart and brain. Mutations in RyR2 are associated with both cardiac arrhythmias and intellectual disability. While the mechanisms of RyR2-linked arrhythmias are well characterized, little is known about the mechanism underlying RyR2-associated intellectual disability. Here, we employed a mouse model expressing a green fluorescent protein (GFP)-tagged RyR2 and a specific GFP probe to determine the subcellular localization of RyR2 in hippocampus. GFP-RyR2 was predominantly detected in the soma and dendrites, but not the dendritic spines of CA1 pyramidal neurons or dentate gyrus granular neurons. GFP-RyR2 was also detected within the mossy fibers in the stratum lucidum of CA3, but not in the presynaptic terminals of CA1 neurons. An arrhythmogenic RyR2-R4496C+/- mutation downregulated the A-type K+ current and increased membrane excitability, but had little effect on the afterhyperpolarization current or presynaptic facilitation of CA1 neurons. The RyR2-R4496C+/- mutation also impaired hippocampal long-term potentiation, learning, and memory. These data reveal the precise subcellular distribution of hippocampal RyR2 and its important role in neuronal excitability, learning, and memory.


Assuntos
Neurônios , Canal de Liberação de Cálcio do Receptor de Rianodina , Animais , Hipocampo/metabolismo , Camundongos , Neurônios/metabolismo , Terminações Pré-Sinápticas/metabolismo , Células Piramidais/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo
8.
Pflugers Arch ; 462(1): 165-75, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21373861

RESUMO

The macroscopic hallmarks of the normal heartbeat are rapid onset of contraction and rapid relaxation and an inotropic response to both increased end diastolic volume and increased heart rate. At the microscopic level, the calcium ion (Ca(2+)) plays a crucial role in normal cardiac contraction. This paper reviews the cycle of Ca(2+) fluxes during the normal heartbeat, which underlie the coupling between excitation and contraction (ECC) and permit a highly synchronized action of cardiac sarcomeres. Length dependence of the response of the regulatory sarcomeric proteins mediates the Frank-Starling Law of the heart. However, Ca(2+) transport may go astray in heart disease and both jeopardize the exquisite mechanism of systole and diastole and triggering arrhythmias. The interplay between weakened and strong segments in nonuniform cardiac muscle may further lead to mechanoelectric feedback-or reverse excitation contraction coupling (RECC) mediating an early diastolic Ca(2+) transient caused by the rapid force decrease during the relaxation phase. These rapid force changes in nonuniform muscle may cause arrhythmogenic Ca(2+) waves to propagate by activation of neighbouring SR by diffusing Ca(2+) ions.


Assuntos
Arritmias Cardíacas/fisiopatologia , Acoplamento Excitação-Contração/fisiologia , Mecanotransdução Celular/fisiologia , Contração Miocárdica/fisiologia , Miócitos Cardíacos/fisiologia , Animais , Cálcio/metabolismo , Modelos Cardiovasculares , Miocárdio/citologia , Miocárdio/metabolismo , Miócitos Cardíacos/ultraestrutura , Estresse Mecânico
9.
J Hepatol ; 55(6): 1249-55, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21703204

RESUMO

BACKGROUND & AIMS: Significance of diastolic dysfunction in cirrhotic cardiomyopathy has been brought to the forefront with several reports of unexpected heart failure following liver transplantation and transjugular intrahepatic portosystemic stent-shunt, but the etiology remains unclear. The present study investigated the role of passive tension regulators - titin and collagen - in the pathogenesis of this condition. METHODS: Cirrhosis was induced by bile duct ligation (BDL) in rats, while controls underwent bile duct inspection with no ligation. Four weeks after operation, cardiac mRNA and protein levels of titin, collagen, and protein kinase A (PKA) were determined. Diastolic function was examined in isolated right ventricular cardiomyocytes, while passive tension was examined in right ventricular trabeculae muscles. RESULTS: In BDL animals, diastolic return velocity was significantly decreased, relaxation time increased and passive tension increased. However, no significant difference in mRNA and protein levels of titin was observed. PKA mRNA and protein levels were significantly decreased in BDL animals. Collagen levels were also significantly altered in the BDL group. CONCLUSIONS: Therefore, diastolic dysfunction exists in cirrhosis with alterations in titin modulation, PKA levels, and collagen configuration contributing to the pathogenesis of this condition.


Assuntos
Cardiomiopatias/etiologia , Cardiomiopatias/metabolismo , Colágeno/metabolismo , Insuficiência Cardíaca Diastólica/etiologia , Insuficiência Cardíaca Diastólica/metabolismo , Cirrose Hepática Experimental/complicações , Cirrose Hepática Experimental/metabolismo , Proteínas Musculares/metabolismo , Animais , Sequência de Bases , Cardiomiopatias/genética , Colágeno/genética , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Colágeno Tipo III/genética , Colágeno Tipo III/metabolismo , Conectina , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Primers do DNA/genética , Insuficiência Cardíaca Diastólica/genética , Cirrose Hepática Experimental/genética , Masculino , Proteínas Musculares/genética , Miócitos Cardíacos/metabolismo , Miofibrilas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Endogâmicos BN , Ratos Sprague-Dawley
10.
Prog Biophys Mol Biol ; 97(2-3): 312-31, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18394686

RESUMO

Starling's Law and the well-known end-systolic pressure-volume relationship (ESPVR) of the left ventricle reflect the effect of sarcomere length (SL) on stress (sigma) development and shortening by myocytes in the uniform ventricle. We show here that tetanic contractions of rat cardiac trabeculae exhibit a sigma-SL relationship at saturating [Ca2+] that depends on sarcomere geometry in a manner similar to skeletal sarcomeres and the existence of opposing forces in cardiac muscle shortened below slack length. The sigma-SL-[Ca2+]free relationships (sigma-SL-CaR) at submaximal [Ca2+] in intact and skinned trabeculae were similar, albeit that the sensitivity for Ca2+ of intact muscle was higher. We analyzed the mechanisms underlying the sigma-SL-CaR using a kinetic model where we assumed that the rates of Ca2+ binding by Troponin-C (Tn-C) and/or cross-bridge (XB) cycling are determined by SL, [Ca2+] or stress. We analyzed the correlation between the model results and steady state stress measurements at varied SL and [Ca2+] from skinned rat cardiac trabeculae to test the hypotheses that: (i) the dominant feedback mechanism is SL, stress or [Ca2+]-dependent; and (ii) the feedback mechanism regulates: Tn-C-Ca2+ affinity, XB kinetics or, unitary XB-force. The analysis strongly suggests that feedback of the number of strong XBs to cardiac Tn-C-Ca2+ affinity is the dominant mechanism that regulates XB recruitment. Application of this concept in a mathematical model of twitch-stress accurately reproduced the sigma-SL-CaR and the time course of twitch-stress as well as the time course of intracellular [Ca2+]i. Modeling of the response of the cardiac twitch to rapid stress changes using the above feedback model uniquely predicted the occurrence of [Ca2+]i transients as a result of accelerated Ca2+ dissociation from Tn-C. The above concept has important repercussions for the non-uniformly contracting heart in which arrhythmogenic Ca2+ waves arise from weakened areas in cardiac muscle. These Ca2+ waves can reversibly be induced in muscle with non-uniform excitation contraction coupling (ECC) by the cycle of stretch and release in the border zone between the damaged and intact regions. Stimulus trains induced propagating Ca2+ waves and reversibly induced arrhythmias. We hypothesize that rapid force loss by sarcomeres in the border zone during relaxation causes Ca2+ release from Tn-C and initiates Ca2+ waves propagated by the sarcoplasmic reticulum (SR). These observations suggest the unifying hypothesis that force feedback to Ca2+ binding by Tn-C is responsible for Starling's Law and the ESPVR in uniform myocardium and leads in non-uniform myocardium to a surge of Ca2+ released by the myofilaments during relaxation, which initiates arrhythmogenic propagating Ca2+ release by the SR.


Assuntos
Arritmias Cardíacas/fisiopatologia , Cálcio/fisiologia , Modelos Cardiovasculares , Contração Miocárdica/fisiologia , Miocárdio/metabolismo , Sarcômeros/fisiologia , Retículo Sarcoplasmático/fisiologia , Animais , Fenômenos Biomecânicos , Ratos , Troponina C/metabolismo
11.
J Cardiovasc Pharmacol ; 53(6): 517-22, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19487959

RESUMO

AIM: To evaluate the role of the Na+-Ca2+ exchange current in the induction of arrhythmias during Ca2+ waves, we investigated the relationship between Ca2+ waves and delayed afterdepolarizations (DADs) and further investigated the effect of KB-R7943, an Na+-Ca2+ exchange inhibitor, on such relationship in multicellular muscle. METHODS: Force, sarcomere length, membrane potential, and [Ca2+]i dynamics were measured in 32 ventricular trabeculae from rat hearts. After the induction of Ca2+ waves by trains of electrical stimuli (400, 500, or 600 ms intervals) for 7.5 seconds, 23 Ca2+ waves in the absence of KB-R7943 and cilnidipine ([Ca2+]o = 2.3 +/- 0.2 mmol/L), 11 Ca2+ waves in the presence of 10 micromol/L KB-R7943 ([Ca2+]o = 2.5 +/- 0.5 mmol/L), and 8 Ca2+ waves in the presence of 1 micromol/L cilnidipine ([Ca]o = 4.1 +/- 0.3 mmol/L) were measured at a sarcomere length of 2.1 microm (23.9 +/- 0.8 degrees C). RESULTS: The amplitude of DADs correlated with the velocity (r = 0.90) and the amplitude (r = 0.90) of Ca2+ waves. The amplitude of DADs was significantly decreased to approximately 40% of the initial value by 10 micromol/L KB-R7943. CONCLUSIONS: These results suggest that the velocity and the amplitude of Ca2+ waves determine the formation of DADs principally through the activation of the Na+-Ca2+ exchange current, thereby inducing triggered arrhythmias in multicellular ventricular muscle.


Assuntos
Coração/fisiopatologia , Trocador de Sódio e Cálcio/fisiologia , Animais , Antiarrítmicos/farmacologia , Arritmias Cardíacas/fisiopatologia , Cálcio/fisiologia , Estimulação Elétrica , Eletrofisiologia , Coração/efeitos dos fármacos , Ventrículos do Coração/efeitos dos fármacos , Ventrículos do Coração/fisiopatologia , Técnicas In Vitro , Potenciais da Membrana/efeitos dos fármacos , Contração Miocárdica/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/fisiologia , Ratos , Trocador de Sódio e Cálcio/antagonistas & inibidores , Tioureia/análogos & derivados , Tioureia/farmacologia
12.
Cardiovasc Res ; 80(1): 55-61, 2008 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-18558629

RESUMO

AIMS: We examined whether non-uniform muscle contraction affects delayed afterdepolarizations (DADs) by dissociating Ca(2+) from myofilaments within the border zone (BZ) between contracting and stretched regions. METHODS AND RESULTS: Force, sarcomere length (SL), membrane potential, and [Ca(2+)](i) dynamics were measured in 31 ventricular trabeculae from rat hearts. Non-uniform muscle contraction was produced by exposing a restricted region of muscle to a jet of solution containing 20 mmol/L 2,3-butanedione monoxime (BDM). DADs were induced by 7.5 s-2 Hz stimulus trains at an SL of 2.0 microm (24 degrees C, [Ca(2+)](o) 2.0 mmol/L). The BDM jet enhanced DADs (n = 6, P < 0.05) and aftercontractions (n = 6, P < 0.05) with or without 100 micromol/L streptomycin and occasionally elicited an action potential. A stretch pulse from an SL of 2.0 microm to 2.1 or 2.2 microm during the last stimulated twitch of the trains accelerated Ca(2+) waves in proportion to the increment of force by the stretch (P < 0.01) with or without streptomycin. In the presence of 1 mmol/L caffeine, rapid shortening of the muscle after the stretch pulse increased [Ca(2+)](i) within the BZ, whose amplitude correlated with the increment of force by the stretch (n = 15, P < 0.01). CONCLUSION: These results suggest that non-uniform muscle contraction can enhance DADs by dissociating Ca(2+) from myofilaments within the BZ and thereby cause triggered arrhythmias.


Assuntos
Arritmias Cardíacas/metabolismo , Cálcio/metabolismo , Potenciais da Membrana , Contração Miocárdica , Miocárdio/metabolismo , Animais , Arritmias Cardíacas/induzido quimicamente , Bloqueadores dos Canais de Cálcio/farmacologia , Diacetil/análogos & derivados , Diacetil/farmacologia , Técnicas In Vitro , Potenciais da Membrana/efeitos dos fármacos , Contração Miocárdica/efeitos dos fármacos , Ratos
13.
CJC Open ; 1(2): 84-92, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32159088

RESUMO

BACKGROUND: The purpose of this article is to examine the systemic circulation and left ventricular (LV) performance by alternative, nonconventional approaches: systemic vascular conductance (G SV ) and the head-capacity relation (ie, the relation between LV pressure and cardiac output), respectively; in so doing, we aspired to present a novel and improved interpretation of integrated cardiovascular function. METHODS: In 16 open-chest, anaesthetized pigs, we measured LV pressure (P LV ), central aortic pressure (P Ao ), and central venous pressure (P CV ) and aortic flow (Q Ao ). We calculated heart rate (HR), stroke volume, cardiac index (CI = cardiac output/body weight), mean PLV ( P ¯ LV ) , and the average arteriovenous pressure difference ( Δ P = P ¯ Ao - P ¯ CV ); G SV  = CI/( P ¯ Ao - P ¯ CV ). We studied the effects of changing loading conditions with the administration of phenylephrine (Δ P ¯ Ao ≥ +25 mm Hg), isoproterenol (ΔHR ∼+25%), sodium nitroprusside (Δ P ¯ Ao ≥ -25 mm Hg), and proximal aortic constriction (to maximize developed P LV and minimize Q Ao ). RESULTS: Sodium nitroprusside and isoproterenol increased G SV compared with phenylephrine and constriction. A maximum head-capacity curve was derived from pooled data using nonlinear regression on the maximum P ¯ LV values in Q Ao bins 12.5 mL/min/kg wide. The head-capacity relation and the plots of conductance were combined using CI as a common axis, which illustrated that CI is the output of the heart and the input of the circulation. CONCLUSIONS: Thus, at a given CI, G SV determines the driving pressure and, thereby, P Ao . We also demonstrated how decreases in G SV compensate for arterial hypotension by restoring the arteriovenous pressure difference and arterial pressure.


CONTEXTE: Le présent article examine l'efficacité de la circulation générale et la fonction ventriculaire gauche à l'aide de paramètres de rechange non conventionnels, soit la conductance vasculaire systémique (G VS ) pour l'une et la relation pression-volume (c.-à-d. la relation entre la pression ventriculaire gauche et le débit cardiaque) pour l'autre, dans le but de présenter une interprétation nouvelle et améliorée de la fonction cardiovasculaire intégrée. MÉTHODOLOGIE: Chez 16 porcs anesthésiés, nous avons mesuré à thorax ouvert la pression ventriculaire gauche (P VG ), la pression aortique centrale (P AC ), la pression veineuse centrale (P VC ) et le flux aortique (Q A ). Nous avons établi la fréquence cardiaque (FC), le volume d'éjection systolique, l'index cardiaque (IC; rapport entre le débit cardiaque et le poids corporel), la P VG moyenne ( P ¯ VG ) et la différence de pression artérioveineuse moyenne ( Δ P = P ¯ A C − P ¯ V C ); G VS  = IC/( P ¯ AC − P ¯ VC ). Nous avons aussi étudié les effets d'une modification des conditions de charge cardiaque provoquée par l'administration de phényléphrine (Δ P ¯ AC ≥ + 25 mmHg), d'isoprotérénol (ΔFC d'environ + 25 %) ou de nitroprussiate de sodium (Δ P ¯ AC ≥ − 25 mmHg) et par la constriction de l'aorte proximale (pour maximiser la P VG développée et réduire le plus possible le Q A ). RÉSULTATS: Le nitroprussiate de sodium et l'isoprotérénol ont augmenté la G VS comparativement à la phényléphrine et à la constriction. Une courbe de la relation pression-volume maximale a été dérivée à partir des données groupées, au moyen d'une régression non linéaire sur les valeurs maximales de la P ¯ VG réparties dans des classes de Q A de 12,5 ml/min/kg d'amplitude. La courbe de la relation pression-volume et le tracé de la conductance ont été superposés en utilisant l'IC comme axe commun, ce qui a permis de constater que l'IC correspond au débit cardiaque et au volume entrant dans la circulation. CONCLUSIONS: Pour un IC donné, la G VS détermine la pression motrice et donc, la P AC . Nous avons aussi démontré comment une diminution de la G VS compense l'hypotension artérielle en rétablissant la différence de pression artérioveineuse et la pression artérielle.

14.
Ann N Y Acad Sci ; 1123: 79-95, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18375580

RESUMO

Starling's law and the end-systolic pressure-volume relationship (ESPVR) reflect the effect of sarcomere length (SL) on the development of stress (sigma) and shortening by myocytes in the uniform ventricle. We show here that tetanic contractions of rat cardiac trabeculae exhibit a sigma-SL relationship at saturating [Ca2+] that depends on sarcomere geometry in a manner similar to that of skeletal sarcomeres and the existence of opposing forces in cardiac muscle shortened below slack length. The sigma-SL -[Ca2+](free) relationships (sigma-SL-Ca relationships) at submaximal [Ca2+] in intact and skinned trabeculae were similar, although the sensitivity for Ca2+ of intact muscle was higher. We analyzed the mechanisms underlying the sigma-SL-Ca relationship by using a kinetic model assuming that the rates of Tn-C Ca2+ binding and/or cross-bridge (XB) cycling are determined by either the SL, [Ca2+], or sigma. We analyzed the correlation between the model results and steady-state sigma measurements at varied SL at [Ca2+] from skinned rat cardiac trabeculae to test the hypotheses that the dominant feedback mechanism is SL-, sigma-, or [Ca2+]-dependent, and that the feedback mechanism regulates Tn-C Ca2+ affinity, XB kinetics, or the unitary XB force. The analysis strongly suggests that the feedback of the number of strong XBs to cardiac Tn-C Ca2+ affinity is the dominant mechanism regulating XB recruitment. Using this concept in a model of twitch-sigma accurately reproduced the sigma-SL-Ca relationship and the time courses of twitch sigma and the intracellular [Ca2+]i. The foregoing concept has equally important repercussions for the nonuniformly contracting heart, in which arrhythmogenic Ca2+ waves arise from weakened areas in the cardiac muscle. These Ca2+ waves can reversibly be induced with nonuniform excitation-contraction coupling (ECC) by the cycle of stretch and release in the border zone between the damaged and intact regions. Stimulus trains induced propagating Ca2+ waves and reversibly induced arrhythmias. We hypothesize that rapid force loss by the sarcomeres in the border zone during relaxation causes Ca2+ release from Tn-C and initiates Ca2+ waves propagated by the sarcoplasmic reticulum (SR). Modeling of the response of the cardiac twitch to rapid force changes using the feedback concept uniquely predicts the occurrence of [Ca2+]i transients as a result of accelerated Ca2+ dissociation from Tn-C. These results are consistent with the hypothesis that a force feedback to Ca2+ binding by Tn-C is responsible for Starling's law and the ESPVR in the uniform myocardium and leads to a surge of Ca2+ released by the myofilaments during relaxation in the nonuniform myocardium, which initiates arrhythmogenic propagating Ca2+ release by the SR.


Assuntos
Arritmias Cardíacas/fisiopatologia , Coração/fisiologia , Contração Miocárdica/fisiologia , Sarcômeros/fisiologia , Animais , Cálcio/fisiologia , Cinética , Modelos Biológicos , Ratos , Sarcômeros/ultraestrutura , Estresse Mecânico
15.
Prog Biophys Mol Biol ; 90(1-3): 151-71, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16120452

RESUMO

We investigated the initiation of Ca(2+)waves underlying triggered propagated contractions (TPCs) occurring in rat cardiac trabeculae under conditions that simulate the functional non-uniformity caused by mechanical or ischemic local damage of the myocardium. A mechanical discontinuity along the trabeculae was created by exposing the preparation to a small constant flow jet of solution with a composition that reduces excitation-contraction coupling in myocytes within that segment. Force was measured and sarcomere length as well as [Ca(2+)](i) were measured regionally. When the jet-contained Caffeine, BDM or Low-[Ca(2+)], muscle-twitch force decreased and the sarcomeres in the exposed segment were stretched by shortening of the normal regions outside the jet. During relaxation the sarcomeres in the exposed segment shortened rapidly. Short trains of stimulation at 2.5 Hz reproducibly caused Ca(2+)-waves to rise from the borders exposed to the jet. Ca(2+)-waves started during force relaxation of the last stimulated twitch and propagated into segments both inside and outside of the jet. Arrhythmias, in the form of non-driven rhythmic activity, were triggered when the amplitude of the Ca(2+)-wave increased by raising [Ca(2+)](o). The arrhythmias disappeared when the muscle uniformity was restored by turning the jet off. We have used the four state model of the cardiac cross bridge (Xb) with feedback of force development to Ca(2+) binding by Troponin-C (TnC) and observed that the force-Ca(2+) relationship as well as the force-sarcomere length relationship and the time course of the force and Ca(2+) transients in cardiac muscle can be reproduced faithfully by a single effect of force on deformation of the TnC.Ca complex and thereby on the dissociation rate of Ca(2+). Importantly, this feedback predicts that rapid decline of force in the activated sarcomere causes release of Ca(2+) from TnC.Ca(2+),which is sufficient to initiate arrhythmogenic Ca(2+) release from the sarcoplasmic reticulum. These results show that non-uniform contraction can cause Ca(2+)-waves underlying TPCs, and suggest that Ca(2+) dissociated from myofilaments plays an important role in the initiation of arrhythmogenic Ca(2+)-waves.


Assuntos
Citoesqueleto de Actina/fisiologia , Arritmias Cardíacas , Cálcio/fisiologia , Modelos Cardiovasculares , Função Ventricular , Animais , Cafeína , Ventrículos do Coração/lesões , Contração Muscular , Ratos , Sarcômeros/fisiologia , Estresse Mecânico , Troponina C/fisiologia
16.
Circ Res ; 97(1): 35-43, 2005 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-15947247

RESUMO

We have investigated the subcellular spontaneous Ca2+ events in canine Purkinje cells using laser scanning confocal microscopy. Three types of Ca2+ transient were found: (1) nonpropagating Ca2+ transients that originate directly under the sarcolemma and lead to (2) small Ca2+ wavelets in a region limited to 6-microm depth under the sarcolemma causing (3) large Ca2+ waves that travel throughout the cell (CWWs). Immunocytochemical studies revealed 3 layers of Ca2+ channels: (1) channels associated with type 1 IP3 receptors (IP3R1) and type 3 ryanodine receptors (RyR3) are prominent directly under the sarcolemma; (2) type 2 ryanodine receptors (RyR2s) are present throughout the cell but virtually absent in a layer between 2 and 4 microm below the sarcolemma (Sub-SL); (3) type 3 ryanodine receptors (RyR3) is the dominant Ca2+ release channel in the Sub-SL. Simulations of both nonpropagating and propagating transients show that the generators of Ca2+ wavelets differ from those of the CWWs with the threshold of the former being less than that of the latter. Thus, Purkinje cells contain a functional and structural Ca2+ system responsible for the mechanism that translates Ca2+ release occurring directly under the sarcolemma into rapid Ca2+ release in the Sub-SL, which then initiates large-amplitude long lasting Ca2+ releases underlying CWWs. The sequence of spontaneous diastolic Ca2+ transients that starts directly under the sarcolemma and leads to Ca2+ wavelets and CWWs is important because CWWs have been shown to cause nondriven electrical activity.


Assuntos
Cálcio/metabolismo , Células de Purkinje/metabolismo , Animais , Canais de Cálcio/análise , Difusão , Cães , Receptores de Inositol 1,4,5-Trifosfato , Receptores Citoplasmáticos e Nucleares/análise , Canal de Liberação de Cálcio do Receptor de Rianodina/análise
17.
Circ Res ; 96(12): 1266-73, 2005 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-15933267

RESUMO

Ca2+ waves underlying triggered propagated contractions (TPCs) are initiated in damaged regions in cardiac muscle and cause arrhythmias. We studied Ca2+ waves underlying TPCs in rat cardiac trabeculae under experimental conditions that simulate the functional nonuniformity caused by local mechanical or ischemic local damage of myocardium. A mechanical discontinuity along the trabeculae was created by exposing the preparation to a small jet of solution with a composition that reduces excitation-contraction coupling (ECC) in myocytes within that segment. The jet solution contained either caffeine (5 mmol/L), 2,3-butanedione monoxime (BDM; 20 mmol/L), or low Ca2+ concentration ([Ca2+]; 0.2 mmol/L). Force was measured with a silicon strain gauge and sarcomere length with laser diffraction techniques in 15 trabeculae. Simultaneously, [Ca2+]i was measured locally using epifluorescence of Fura-2. The jet of solution was applied perpendicularly to a small muscle region (200 to 300 microm) at constant flow. When the jet contained caffeine, BDM, or low [Ca2+], during the stimulated twitch, muscle-twitch force decreased and the sarcomeres in the exposed segment were stretched by shortening normal regions outside the jet. Typical protocols for TPC induction (7.5 s-2.5 Hz stimulus trains at 23 degrees C; [Ca2+]o=2.0 mmol/L) reproducibly generated Ca2+ waves that arose from the border between shortening and stretched regions. Such Ca2+ waves started during force-relaxation of the last stimulated twitch of the train and propagated (0.2 to 2.8 mm/sec) into segments both inside and outside of the jet. Arrhythmias, in the form of nondriven rhythmic activity, were induced when the amplitude of the Ca2+-wave was increased by raising [Ca2+]o. Arrhythmias disappeared rapidly when uniformity of ECC throughout the muscle was restored by turning the jet off. These results show, for the first time, that nonuniform ECC can cause Ca2+ waves underlying TPCs and suggest that Ca2+ dissociated from myofilaments plays an important role in the initiation of Ca2+ waves.


Assuntos
Arritmias Cardíacas/etiologia , Cálcio/metabolismo , Coração/fisiologia , Contração Miocárdica , Miócitos Cardíacos/metabolismo , Animais , Arritmias Cardíacas/metabolismo , Cafeína/farmacologia , Diacetil/análogos & derivados , Diacetil/farmacologia , Ratos , Ratos Endogâmicos BN , Sarcômeros/efeitos dos fármacos , Retículo Sarcoplasmático/metabolismo
18.
Cardiovasc Res ; 69(1): 140-51, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16112660

RESUMO

OBJECTIVE: The role of phosphorylation of the ryanodine receptor at serine-2808 (RyRS2808) in congestive heart failure (CHF) is controversial, and effects of RyRS2808 phosphorylation on contraction are unclear. It has been reported that diastolic sarcomere length (SL) fluctuations accompany propagating contractile waves due to propagating SR Ca2+ release in trabeculae from rats with CHF. Here, we studied the influence of RyR destabilization by FK506 and isoproterenol on twitch force (Ftw) and SL fluctuations in right ventricular (RV) trabeculae. We measured phosphorylation of RyRS2808 in rats with myocardial infarction (MI) with or without beta-blockade and in rats during isoproterenol stimulation in order to assess the role of RyRS2808 phosphorylation in SL fluctuations in failing hearts. METHODS: Five groups of male Lewis Brown-Norway rats were studied 3 months after MI: i) Sham; ii) MI with CHF (cMI); iii) MI without CHF; iv) metoprolol-treated MI, with and without CHF. The root mean square (RMSSL) of SL fluctuations in RV trabeculae was calculated. RESULTS: RMSSL increased strongly both following a short train of stimuli at 2.5 Hz and following catecholamine activation in trabeculae from MI with CHF, resulting in a decrease in Ftw in proportion to RMSSL. RyRS2808 phosphorylation was increased significantly in the left ventricle (LV; approximately 58%, P<0.05) but not in the RV (n.s.) in MI rats with CHF. FK506 tripled high frequency stimulation-induced RMSSL in nonfailing trabecula but did not further enhance RMSSL in failing trabecula. Isoproterenol increased RMSSL in nonfailing trabeculae only modestly despite a substantial increase in RyRS2808 phosphorylation in the RV (approximately 60%, P<0.05). Isoproterenol induced SL fluctuation without an increase in RV-RyRS2808 phosphorylation in failing trabeculae. Chronic beta-blockade decreased high frequency and catecholamine stimulation-induced RMSSL while RyRS2808 phosphorylation in the RV was indistinguishable from that in cMI. CONCLUSIONS: Acute RyRS2808 phosphorylation by itself does not cause spontaneous contractile waves owing to RyR2 destabilization. Spontaneous contractile waves in CHF are not caused by RyRS2808 phosphorylation alone, suggesting that factors other than RyRS2808 phosphorylation affect RyR function.


Assuntos
Insuficiência Cardíaca/metabolismo , Contração Miocárdica , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo , Serina/metabolismo , Agonistas Adrenérgicos beta/farmacologia , Antagonistas Adrenérgicos beta/farmacologia , Animais , Diástole , Ecocardiografia , Insuficiência Cardíaca/fisiopatologia , Isoproterenol/farmacologia , Masculino , Metoprolol/farmacologia , Modelos Animais , Fosforilação , Ratos , Ratos Endogâmicos BN , Retículo Sarcoplasmático/efeitos dos fármacos , Tacrolimo/farmacologia
19.
Ann N Y Acad Sci ; 1080: 248-67, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17132788

RESUMO

Ca(2+) release from the sarcoplasmic reticulum (SR) depends on the sarcoplasmic reticulum (SR) Ca(2+) load and the cytosolic Ca(2+) level. Arrhythmogenic Ca(2+) waves underlying triggered propagated contractions arise from Ca(2+) overloaded regions near damaged areas in the cardiac muscle. Ca(2+) waves can also be induced in undamaged muscle, in regions with nonuniform excitation-contraction (EC) coupling by the cycle of stretch and release in the border zone between the damaged and intact regions. We hypothesize that rapid shortening of sarcomeres in the border zone during relaxation causes Ca(2+) release from troponin C (TnC) on thin filaments and initiates Ca(2+) waves. Elimination of this shortening will inhibit the initiation of Ca(2+) waves, while SR Ca(2+) overload will enhance the waves. Force, sarcomere length (SL), and [Ca(2+)](i) were measured and muscle length was controlled. A small jet of Hepes solution with an extracellular [Ca(2+)] 10 mM (HC), or HC containing BDM, was used to weaken a 300 mum long muscle segment. Trains of electrical stimuli were used to induce Ca(2+) waves. The effects of small exponential stretches on triggered propagatory contraction (TPC) amplitude and propagation velocity of Ca(2+) waves (V(prop)) were studied. Sarcomere shortening was uniform prior to activation. HC induced spontaneous diastolic sarcomere contractions in the jet region and attenuated twitch sarcomere shortening; HC+ butanedione monoxime (BDM) caused stretch only in the jet region. Stimulus trains induced Ca(2+) waves, which started inside the HC jet region during twitch relaxation. Ca(2+) waves started in the border zone of the BDM jet. The initial local [Ca(2+)](i) rise of the waves by HC was twice that by BDM. The waves propagated at a V(prop) of 2.0 +/- 0.2 mm/sec. Arrhythmias occurred frequently in trabeculae following exposure to the HC jet. Stretch early during relaxation, which reduced sarcomere shortening in the weakened regions, substantially decreased force of the TPC (F(TPC)) and delayed Ca(2+) waves, and reduced V(prop) commensurate with the reduction F(TPC). These results are consistent with the hypothesis that Ca(2+) release from the myofilaments initiates arrhythmogenic propagating Ca(2+) release. Prevention of sarcomere shortening, by itself, did not inhibit Ca(2+) wave generation. SR Ca(2+) overload potentiated initiation and propagation of Ca(2+) waves.


Assuntos
Arritmias Cardíacas/metabolismo , Cálcio/metabolismo , Miocárdio/metabolismo , Sarcômeros/fisiologia , Animais , Arritmias Cardíacas/fisiopatologia , Contração Miocárdica , Ratos , Retículo Sarcoplasmático/metabolismo
20.
Ann N Y Acad Sci ; 1080: 466-78, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17132802

RESUMO

A novel physiological cardiac assist device (PCAD), the LEV RAM assist device, which is synchronized with the failing heart ejection, was developed to improve the failing heart systolic and diastolic functions and cardiac energetics. The PCAD uses a single short cannula, which is inserted into the beating left ventricle (LV) by means of a specially designed device. Blood is ejected from the PCAD into the LV after the opening of the aortic valve and augments the cardiac stroke work. The same amount of blood is withdrawn from the LV into the PCAD, through the same cannula, during the diastole. The study aims to test the effects of the PCAD on cardiac energetics and coronary blood flow. Adult normal sheep were anesthetized and the heart was exposed by left thoracotomy. Pressures transducers (Millar Instruments, Inc., Houston, TX) were inserted into the LV and aorta. LV volume was measured by sonocrystals (Sonometrics Corp., London, Ontario, Canada) and impedance catheter (CD Lycom, Argonstrat 116 Zoetermeer, 2718 SP The Netherlands). Flowmeters (transonic) measured the cardiac output (CO) and the coronary arteries (left anterior descending (LAD) and circumflex) flows. A thin cannula was inserted into the coronary sinus and the oxygen content of the LV and the coronary sinus were determined (AVOXimeter-1000). Pressure-volume loops, myocardial energetics, and coronary flow were measured. The displaced PCAD volume was 11 mL. Four different levels of assist were studied by changing the frequency of the assist: (1) assist beat after three successive regular beats [1:4], (2) assist every third beat [1:3], (3) alternate assist and normal beat [1:2], and (4) continuous assist [1:1]. Cardiac output (CO) and stroke volume (SV) increased proportionally with increasing frequency of assist. Systolic mechanical efficiency of the PCAD was above 90%. Simultaneously, the PCAD decreased the end-diastolic volume (EDV; diastolic unloading). The PCAD increased coronary flow and decreased cardiac arterial-venous O(2) difference. We conclude that the PCAD efficiently augments CO and stroke work, decreases preload, and decreases the coronary arterial-venous O(2) difference; all these may expedite cardiac reverse remodeling, and promote recovery of function and eventual easy explanation of the device.


Assuntos
Coração Auxiliar , Coração/fisiologia , Animais , Ovinos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA