Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Diagnostics (Basel) ; 11(4)2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33805144

RESUMO

INTRODUCTION: Disasters, including terrorism and earthquakes, are significant threats to people and may lead to many people requiring rescue. The longer the rescue takes, the higher the chances of an individual contracting acute compartment syndrome (ACS). ACS is fatal if diagnosed too late, and early diagnosis and treatment are essential. OBJECTIVE: To assess the ability of dynamic phosphorus magnetic resonance spectroscopy (31P-MRS) in the early detection of muscular damage in ACS. MATERIALS AND METHODS: Six ACS model rats were used for serial 31P-MRS scanning (9.4 Tesla). Skeletal muscle metabolism, represented by the levels of phosphocreatine (PCr), inorganic phosphate (Pi), and adenosine triphosphate (ATP), was assessed. The PCr/(Pi + PCr) ratio, which decreases with ischemia, was compared with simultaneously sampled plasma creatine phosphokinase (CPK), a muscle damage marker. RESULTS: The PCr/(Pi + PCr) ratio significantly decreased after inducing ischemia (from 0.86 ± 0.10 to 0.18 ± 0.06; p < 0.05), while CPK did not change significantly (from 89 ± 29.46 to 241.50 ± 113.28; p > 0.05). The intracellular and arterial pH index decreased over time, revealing significant differences at 120 min post-ischemia (from 7.09 ± 0.01 to 6.43 ± 0.13, and from 7.47 ± 0.03 to 7.39 ± 0.04, respectively). In the reperfusion state, the spectra and pH did not return to the original values. CONCLUSIONS: The dynamic 31P-MRS technique can rapidly detect changes in muscle bioenergetics. This technique is a promising non-invasive method for determining early muscular damage in ACS.

2.
Sci Rep ; 11(1): 12806, 2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-34140618

RESUMO

The failure of neuroprotective treatment-related clinical trials may be partially caused by unestablished animal models. Existing animal models are less likely to provide occlusion confined to the middle cerebral artery (MCA), making transarterial intervention difficult. We aimed to develop a novel focal stroke model using a microcatheter and zirconium dioxide that is non-magnetic under fluoroscopic guidance, which can monitor MCA occlusion and can improve hemorrhagic complications. Using male Sprague Dawley rats (n = 10), a microcatheter was navigated from the caudal ventral artery to the left internal carotid artery using an X-ray fluoroscopy to establish local occlusion. All rat cerebral angiographies were successful. No rats had hemorrhagic complications. Eight (80%) rats underwent occlusion of the MCA bifurcation by zirconium dioxide. Accidentally, the left posterior cerebral artery was failure embolized in 2 rats (20%). The median operating time was 8 min. All rats of occlusion MCA revealed an incomplete hemiparesis on the right side with neurological deficit score ranging from 1 to 3 (median 1, interquartile range 1-3) at 24 h after the induction of ischemia. Moreover, 2% 2,3,5-triphenyl tetrazolium chloride staining showed that the median infarct volume (mm3) was 280 (interquartile range 267-333) 24 h after the left MCA bifurcation occlusion. We present a novel rat model for focal stroke using a microcatheter and zirconium dioxide which does not affect the MRI. The model is predictable which is well confined within the territory supplied by the MCA, and reproducibility of this model is 80%. Fluoroscopy was able to identify which the MCA occlusion and model success while creating the model. It permitted exclusion of animals with complications from the experiment.


Assuntos
Catéteres , Fluoroscopia , Infarto da Artéria Cerebral Média/patologia , Isquemia/patologia , Zircônio/química , Animais , Modelos Animais de Doenças , Infarto da Artéria Cerebral Média/complicações , Infarto da Artéria Cerebral Média/diagnóstico por imagem , Isquemia/complicações , Isquemia/diagnóstico por imagem , Imageamento por Ressonância Magnética , Masculino , Ratos Sprague-Dawley , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA