Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(3)2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36772589

RESUMO

We examine the effect of resonant absorption of electromagnetic signals in a silicon semiconductor plasma layer when the dielectric plate is placed behind it both experimentally and numerically. It is shown that such plate acts as a dielectric resonator and can significantly increase the electromagnetic energy absorption in the semiconductor for certain frequencies determined by the dielectric plate parameters. Numerical modelling of the effect is performed under the conditions of conducted experiment. The numerical results are found to be in qualitative agreement with experimental ones. This study confirms the proposed earlier method of increasing the efficiency of bolometric-type detectors of electromagnetic radiation.

2.
Sensors (Basel) ; 22(1)2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-35009938

RESUMO

We consider two of the most relevant problems that arise when modeling the properties of a tunnel radio communication channel through a plasma layer. First, we studied the case of the oblique incidence of electromagnetic waves on a layer of ionized gas for two wave polarizations. The resonator parameters that provide signal reception at a wide solid angle were found. We also took into account the unavoidable presence of a protective layer between the plasma and the resonator, as well as the conducting elements of the antenna system in the dielectric itself. This provides the first complete simulation for a tunnel communication channel. Noise immunity and communication range studies were conducted for a prospective spacecraft radio line.

3.
Nanomaterials (Basel) ; 14(2)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38251106

RESUMO

It is known that the dielectric layer (resonator) located behind the conducting plate of the bolometer system can significantly increase its sensitivity near the resonance frequencies. In this paper, the possibility of receiving broadband electromagnetic signals in a multilayer bolometric meta-material made of alternating conducting (e.g., silicon semiconductor) and dielectric layers is demonstrated both experimentally and numerically. It is shown that such a multilayer structure acts as a lattice of resonators and can significantly increase the width of the frequency band of efficient electromagnetic energy absorption. The parameters of the dielectric and semiconductor layers determine the frequency bands. Numerical modeling of the effect has been carried out under the conditions of our experiment. The numerical results show acceptable qualitative agreement with the experimental data. This study develops the previously proposed technique of resonant absorption of electromagnetic signals in bolometric structures.

4.
Beilstein J Nanotechnol ; 13: 444-454, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35655940

RESUMO

The hardware implementation of signal microprocessors based on superconducting technologies seems relevant for a number of niche tasks where performance and energy efficiency are critically important. In this paper, we consider the basic elements for superconducting neural networks on radial basis functions. We examine the static and dynamic activation functions of the proposed neuron. Special attention is paid to tuning the activation functions to a Gaussian form with relatively large amplitude. For the practical implementation of the required tunability, we proposed and investigated heterostructures designed for the implementation of adjustable inductors that consist of superconducting, ferromagnetic, and normal layers.

5.
Beilstein J Nanotechnol ; 7: 1397-1403, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27826513

RESUMO

We propose the concept of using superconducting quantum interferometers for the implementation of neural network algorithms with extremely low power dissipation. These adiabatic elements are Josephson cells with sigmoid- and Gaussian-like activation functions. We optimize their parameters for application in three-layer perceptron and radial basis function networks.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA