Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Neuroimage ; 166: 325-334, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29107771

RESUMO

Previous working memory (WM) research based on non-human primate electrophysiology and human EEG has shown that frontal brain regions maintain frequencies of flutter stimulation across different sensory modalities by means of a supramodal parametric WM code. These findings imply that frontal regions encode the memorized frequencies in a sensory-unspecific, quantitative format. Here, we explored which brain regions maintain information about frequencies provided by different sensory modalities at the level of activity pattern across fMRI voxel populations. Moreover, we sought evidence for a supramodal multivariate WM representation. Participants maintained the same set of frequencies of tactile vibration and visual flicker for a 6 s WM delay in a frequency discrimination task. A support vector regression model for multivariate pattern analysis was applied. We observed that sensory cortices were only selective for memoranda of their corresponding modalities, while frontoparietal regions exhibited distinguishable activity patterns to memorized frequencies regardless of sensory modality. A common multivariate code was not evident in our data. Collectively, we show that mnemonic representations for stimulus frequencies are maintained throughout the cortical hierarchy, in line with the suggested transformation of information across different representational formats. Although evidence for a supramodal multivariate code is absent, our findings underpin the generalized role of the frontoparietal cortex for maintaining quantitative information across sensory modalities.


Assuntos
Mapeamento Encefálico/métodos , Lobo Frontal/fisiologia , Memória de Curto Prazo/fisiologia , Lobo Parietal/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Desempenho Psicomotor/fisiologia , Percepção do Tato/fisiologia , Adulto , Feminino , Lobo Frontal/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Masculino , Lobo Parietal/diagnóstico por imagem , Adulto Jovem
2.
Neuroimage ; 56(3): 1773-82, 2011 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-21356314

RESUMO

Electrocorticography (ECoG) and functional MRI (BOLD-fMRI) have been used previously to measure brain activity during working memory delay periods. These studies have separately reported oscillation changes in the theta (4-8 Hz) band and BOLD-fMRI increases during delay periods when information is maintained in memory. However, it is not known how intracranial cortical field potential (CFP) changes relate to BOLD-fMRI responses during delay periods. To answer this question, fMRI was obtained from six epilepsy patients during a visual working memory task. Then, following subdural macroelectrode implant, continuous ECoG was used to record CFPs during the same task. Time-frequency analyses showed delay period gamma band oscillation amplitude increases on electrodes located near fMRI activity, while in the theta band changes were higher for electrodes located away from fMRI activation. The amplitude of the ECoG gamma band response was significantly positively correlated with the fMRI response, while a negative correlation was found for the theta band. The findings are consistent with previous reports of local field potential (LFP) coupling in the gamma band with BOLD-fMRI responses during visual stimulation in monkeys, but are novel in that the relationship reported here persists after the disappearance of visual stimuli while information is being maintained in memory. We conclude that there is a relationship between BOLD-fMRI increases and human working memory delay period gamma oscillation increases and theta decreases. The spectral profile change provides a basis for comparison of working memory delay period BOLD-fMRI with field potential recordings in animals and other human intracranial EEG studies.


Assuntos
Encéfalo/fisiologia , Eletroencefalografia/psicologia , Imageamento por Ressonância Magnética/métodos , Memória de Curto Prazo/fisiologia , Adulto , Algoritmos , Circulação Cerebrovascular/fisiologia , Resistência a Medicamentos , Eletrodos , Eletroencefalografia/métodos , Fenômenos Eletrofisiológicos , Epilepsia/patologia , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Oxigênio/sangue , Estimulação Luminosa , Desempenho Psicomotor/fisiologia , Tempo de Reação/fisiologia , Ritmo Teta/fisiologia
3.
Comput Biol Med ; 41(12): 1092-9, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21129738

RESUMO

Electrocorticography (ECoG) allows for measurement of task-related local field potentials directly from cortex in neurosurgical patients. Diffusion tensor imaging (DTI) tractography is an MRI technique that allows for reconstruction of brain white matter tracts, which can be used to infer structural connectivity. This paper reports a novel merger of these two modalities. A processing stream is described in which fiber tracts near intracranial macroelectrodes showing task-related functional responses are isolated to explore structural networks related to working memory maintenance. Results show that ECoG-constrained tractography is useful for revealing structural connectivity patterns related to spatially- and temporally-specific functional responses.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Imagem de Tensor de Difusão/métodos , Eletrodiagnóstico/métodos , Vias Neurais/fisiologia , Adulto , Técnicas de Diagnóstico Neurológico , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA