RESUMO
Recurrences of depressive episodes in major depressive disorder (MDD) can be explained by the diathesis-stress model, suggesting that stressful life events (SLEs) can trigger MDD episodes in individuals with pre-existing vulnerabilities. However, the longitudinal neurobiological impact of SLEs on gray matter volume (GMV) in MDD and its interaction with early-life adversity remains unresolved. In 754 participants aged 18-65 years (362 MDD patients; 392 healthy controls; HCs), we assessed longitudinal associations between SLEs (Life Events Questionnaire) and whole-brain GMV changes (3 Tesla MRI) during a 2-year interval, using voxel-based morphometry in SPM12/CAT12. We also explored the potential moderating role of childhood maltreatment (Childhood Trauma Questionnaire) on these associations. Over the 2-year interval, HCs demonstrated significant GMV reductions in the middle frontal, precentral, and postcentral gyri in response to higher levels of SLEs, while MDD patients showed no such GMV changes. Childhood maltreatment did not moderate these associations in either group. However, MDD patients who had at least one depressive episode during the 2-year interval, compared to those who did not, or HCs, showed GMV increases in the middle frontal, precentral, and postcentral gyri associated with an increase in SLEs and childhood maltreatment. Our findings indicate distinct GMV changes in response to SLEs between MDD patients and HCs. GMV decreases in HCs may represent adaptive responses to stress, whereas GMV increases in MDD patients with both childhood maltreatment and a depressive episode during the 2-year interval may indicate maladaptive changes, suggesting a neural foundation for the diathesis-stress model in MDD recurrences.
Assuntos
Transtorno Depressivo Maior , Substância Cinzenta , Imageamento por Ressonância Magnética , Estresse Psicológico , Humanos , Transtorno Depressivo Maior/patologia , Transtorno Depressivo Maior/fisiopatologia , Feminino , Substância Cinzenta/patologia , Masculino , Adulto , Pessoa de Meia-Idade , Imageamento por Ressonância Magnética/métodos , Adolescente , Idoso , Adulto Jovem , Estudos Longitudinais , Encéfalo/patologia , Acontecimentos que Mudam a Vida , Experiências Adversas da Infância , Maus-Tratos Infantis/psicologiaRESUMO
BACKGROUND: Individuals at risk for bipolar disorder (BD) have a wide range of genetic and non-genetic risk factors, like a positive family history of BD or (sub)threshold affective symptoms. Yet, it is unclear whether these individuals at risk and those diagnosed with BD share similar gray matter brain alterations. METHODS: In 410 male and female participants aged 17-35 years, we compared gray matter volume (3T MRI) between individuals at risk for BD (as assessed using the EPIbipolar scale; n = 208), patients with a DSM-IV-TR diagnosis of BD (n = 87), and healthy controls (n = 115) using voxel-based morphometry in SPM12/CAT12. We applied conjunction analyses to identify similarities in gray matter volume alterations in individuals at risk and BD patients, relative to healthy controls. We also performed exploratory whole-brain analyses to identify differences in gray matter volume among groups. ComBat was used to harmonize imaging data from seven sites. RESULTS: Both individuals at risk and BD patients showed larger volumes in the right putamen than healthy controls. Furthermore, individuals at risk had smaller volumes in the right inferior occipital gyrus, and BD patients had larger volumes in the left precuneus, compared to healthy controls. These findings were independent of course of illness (number of lifetime manic and depressive episodes, number of hospitalizations), comorbid diagnoses (major depressive disorder, attention-deficit hyperactivity disorder, anxiety disorder, eating disorder), familial risk, current disease severity (global functioning, remission status), and current medication intake. CONCLUSIONS: Our findings indicate that alterations in the right putamen might constitute a vulnerability marker for BD.
RESUMO
Up to 70% of patients with major depressive disorder present with psychomotor disturbance (PmD), but at the present time understanding of its pathophysiology is limited. In this study, we capitalized on a large sample of patients to examine the neural correlates of PmD in depression. This study included 820 healthy participants and 699 patients with remitted (n = 402) or current (n = 297) depression. Patients were further categorized as having psychomotor retardation, agitation, or no PmD. We compared resting-state functional connectivity (ROI-to-ROI) between nodes of the cerebral motor network between the groups, including primary motor cortex, supplementary motor area, sensory cortex, superior parietal lobe, caudate, putamen, pallidum, thalamus, and cerebellum. Additionally, we examined network topology of the motor network using graph theory. Among the currently depressed 55% had PmD (15% agitation, 29% retardation, and 11% concurrent agitation and retardation), while 16% of the remitted patients had PmD (8% retardation and 8% agitation). When compared with controls, currently depressed patients with PmD showed higher thalamo-cortical and pallido-cortical connectivity, but no network topology alterations. Currently depressed patients with retardation only had higher thalamo-cortical connectivity, while those with agitation had predominant higher pallido-cortical connectivity. Currently depressed patients without PmD showed higher thalamo-cortical, pallido-cortical, and cortico-cortical connectivity, as well as altered network topology compared to healthy controls. Remitted patients with PmD showed no differences in single connections but altered network topology, while remitted patients without PmD did not differ from healthy controls in any measure. We found evidence for compensatory increased cortico-cortical resting-state functional connectivity that may prevent psychomotor disturbance in current depression, but may perturb network topology. Agitation and retardation show specific connectivity signatures. Motor network topology is slightly altered in remitted patients arguing for persistent changes in depression. These alterations in functional connectivity may be addressed with non-invasive brain stimulation.
RESUMO
While most people are right-handed, a minority are left-handed or mixed-handed. It has been suggested that mental and developmental disorders are associated with increased prevalence of left-handedness and mixed-handedness. However, substantial heterogeneity exists across disorders, indicating that not all disorders are associated with a considerable shift away from right-handedness. Increased frequencies in left- and mixed-handedness have also been associated with more severe clinical symptoms, indicating that symptom severity rather than diagnosis explains the high prevalence of non-right-handedness in mental disorders. To address this issue, the present study investigated the association between handedness and measures of stress reactivity, depression, mania, anxiety, and positive and negative symptoms in a large sample of 994 healthy controls and 1213 patients with DSM IV affective disorders, schizoaffective disorders, or schizophrenia. A series of complementary analyses revealed lower lateralization and a higher percentage of mixed-handedness in patients with major depression (14.9%) and schizophrenia (24.0%) compared to healthy controls (12%). For patients with schizophrenia, higher symptom severity was associated with an increasing tendency towards left-handedness. No associations were found for patients diagnosed with major depression, bipolar disorder, or schizoaffective disorder. In healthy controls, no association between hand preference and symptoms was evident. Taken together, these findings suggest that both diagnosis and symptom severity are relevant for the shift away from right-handedness in mental disorders like schizophrenia and major depression.
RESUMO
BACKGROUND: Depressive symptoms seem to be interrelated in a complex and self-reinforcing way. To gain a better understanding of this complexity, the inclusion of theoretically relevant constructs (such as risk and protective factors) offers a comprehensive view into the complex mechanisms underlying depression. METHODS: Cross-sectional data from individuals diagnosed with a major depressive disorder (N = 986) and healthy controls (N = 1049) were analyzed. Participants self-reported their depressive symptoms, as well as several risk factors and protective factors. Regularized partial correlation networks were estimated for each group and compared using a network comparison test. RESULTS: Symptoms of depression were more strongly connected in the network of depressed patients than in healthy controls. Among the risk factors, perceived stress, the experience of negative life events, emotional neglect, and emotional abuse were the most centrally embedded in both networks. However, the centrality of risk factors did not significantly differ between the two groups. Among the protective factors, social support, personal competence, and acceptance were the most central in both networks, where the latter was significantly more strongly associated with the symptom of self-hate in depressed patients. CONCLUSION: The network analysis revealed that key symptoms of depression were more strongly connected for depressed patients than for healthy controls, and that risk and protective factors play an important role, particularly perceived stress in both groups and an accepting attitude for depressed patients. However, the purpose of this study is hypothesis generating and assisting in the potential selection of non-symptom nodes for future research.
Assuntos
Depressão , Transtorno Depressivo Maior , Humanos , Depressão/etiologia , Transtorno Depressivo Maior/epidemiologia , Fatores de Proteção , Estudos Transversais , AutorrelatoRESUMO
Importance: Biological psychiatry aims to understand mental disorders in terms of altered neurobiological pathways. However, for one of the most prevalent and disabling mental disorders, major depressive disorder (MDD), no informative biomarkers have been identified. Objective: To evaluate whether machine learning (ML) can identify a multivariate biomarker for MDD. Design, Setting, and Participants: This study used data from the Marburg-Münster Affective Disorders Cohort Study, a case-control clinical neuroimaging study. Patients with acute or lifetime MDD and healthy controls aged 18 to 65 years were recruited from primary care and the general population in Münster and Marburg, Germany, from September 11, 2014, to September 26, 2018. The Münster Neuroimaging Cohort (MNC) was used as an independent partial replication sample. Data were analyzed from April 2022 to June 2023. Exposure: Patients with MDD and healthy controls. Main Outcome and Measure: Diagnostic classification accuracy was quantified on an individual level using an extensive ML-based multivariate approach across a comprehensive range of neuroimaging modalities, including structural and functional magnetic resonance imaging and diffusion tensor imaging as well as a polygenic risk score for depression. Results: Of 1801 included participants, 1162 (64.5%) were female, and the mean (SD) age was 36.1 (13.1) years. There were a total of 856 patients with MDD (47.5%) and 945 healthy controls (52.5%). The MNC replication sample included 1198 individuals (362 with MDD [30.1%] and 836 healthy controls [69.9%]). Training and testing a total of 4 million ML models, mean (SD) accuracies for diagnostic classification ranged between 48.1% (3.6%) and 62.0% (4.8%). Integrating neuroimaging modalities and stratifying individuals based on age, sex, treatment, or remission status does not enhance model performance. Findings were replicated within study sites and also observed in structural magnetic resonance imaging within MNC. Under simulated conditions of perfect reliability, performance did not significantly improve. Analyzing model errors suggests that symptom severity could be a potential focus for identifying MDD subgroups. Conclusion and Relevance: Despite the improved predictive capability of multivariate compared with univariate neuroimaging markers, no informative individual-level MDD biomarker-even under extensive ML optimization in a large sample of diagnosed patients-could be identified.
Assuntos
Transtorno Depressivo Maior , Humanos , Feminino , Masculino , Transtorno Depressivo Maior/diagnóstico por imagem , Transtorno Depressivo Maior/patologia , Imagem de Tensor de Difusão , Estudos de Coortes , Reprodutibilidade dos Testes , Imageamento por Ressonância Magnética , BiomarcadoresRESUMO
Patients with bipolar disorder (BD) show alterations in both gray matter volume (GMV) and white matter (WM) integrity compared with healthy controls (HC). However, it remains unclear whether the phenotypically distinct BD subtypes (BD-I and BD-II) also exhibit brain structural differences. This study investigated GMV and WM differences between HC, BD-I, and BD-II, along with clinical and genetic associations. N = 73 BD-I, n = 63 BD-II patients and n = 136 matched HC were included. Using voxel-based morphometry and tract-based spatial statistics, main effects of group in GMV and fractional anisotropy (FA) were analyzed. Associations between clinical and genetic features and GMV or FA were calculated using regression models. For FA but not GMV, we found significant differences between groups. BD-I patients showed lower FA compared with BD-II patients (ptfce-FWE = 0.006), primarily in the anterior corpus callosum. Compared with HC, BD-I patients exhibited lower FA in widespread clusters (ptfce-FWE < 0.001), including almost all major projection, association, and commissural fiber tracts. BD-II patients also demonstrated lower FA compared with HC, although less pronounced (ptfce-FWE = 0.049). The results remained unchanged after controlling for clinical and genetic features, for which no independent associations with FA or GMV emerged. Our findings suggest that, at a neurobiological level, BD subtypes may reflect distinct degrees of disease expression, with increasing WM microstructure disruption from BD-II to BD-I. This differential magnitude of microstructural alterations was not clearly linked to clinical and genetic variables. These findings should be considered when discussing the classification of BD subtypes within the spectrum of affective disorders.
Assuntos
Transtorno Bipolar , Substância Branca , Humanos , Transtorno Bipolar/diagnóstico por imagem , Transtorno Bipolar/genética , Substância Cinzenta/diagnóstico por imagem , Encéfalo , Substância Branca/diagnóstico por imagem , Córtex Cerebral , AnisotropiaRESUMO
Machine learning can be used to define subtypes of psychiatric conditions based on shared biological foundations of mental disorders. Here we analyzed cross-sectional brain images from 4,222 individuals with schizophrenia and 7038 healthy subjects pooled across 41 international cohorts from the ENIGMA, non-ENIGMA cohorts and public datasets. Using the Subtype and Stage Inference (SuStaIn) algorithm, we identify two distinct neurostructural subgroups by mapping the spatial and temporal 'trajectory' of gray matter change in schizophrenia. Subgroup 1 was characterized by an early cortical-predominant loss with enlarged striatum, whereas subgroup 2 displayed an early subcortical-predominant loss in the hippocampus, striatum and other subcortical regions. We confirmed the reproducibility of the two neurostructural subtypes across various sample sites, including Europe, North America and East Asia. This imaging-based taxonomy holds the potential to identify individuals with shared neurobiological attributes, thereby suggesting the viability of redefining existing disorder constructs based on biological factors.
Assuntos
Algoritmos , Substância Cinzenta , Imageamento por Ressonância Magnética , Esquizofrenia , Humanos , Esquizofrenia/diagnóstico por imagem , Esquizofrenia/patologia , Masculino , Feminino , Adulto , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/patologia , Aprendizado de Máquina , Pessoa de Meia-Idade , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Estudos Transversais , Europa (Continente) , Neuroimagem , Reprodutibilidade dos Testes , América do Norte , Hipocampo/diagnóstico por imagem , Hipocampo/patologiaRESUMO
Syntax, the grammatical structure of sentences, is a fundamental aspect of language. It remains debated whether reduced syntactic complexity is unique to schizophrenia spectrum disorder (SSD) or whether it is also present in major depressive disorder (MDD). Furthermore, the association of syntax (including syntactic complexity and diversity) with language-related neuropsychology and psychopathological symptoms across disorders remains unclear. Thirty-four SSD patients and thirty-eight MDD patients diagnosed according to DSM-IV-TR as well as forty healthy controls (HC) were included and tasked with describing four pictures from the Thematic Apperception Test. We analyzed the produced speech regarding its syntax delineating measures for syntactic complexity (the total number of main clauses embedding subordinate clauses) and diversity (number of different types of complex sentences). We performed cluster analysis to identify clusters based on syntax and investigated associations of syntactic, to language-related neuropsychological (verbal fluency and verbal episodic memory), and psychopathological measures (positive and negative formal thought disorder) using network analyses. Syntax in SSD was significantly reduced in comparison to MDD and HC, whereas the comparison of HC and MDD revealed no significant differences. No associations were present between speech measures and current medication, duration and severity of illness, age or sex; the single association accounted for was education. A cluster analysis resulted in four clusters with different degrees of syntax across diagnoses. Subjects with less syntax exhibited pronounced positive and negative symptoms and displayed poorer performance in executive functioning, global functioning, and verbal episodic memory. All cluster-based networks indicated varying degrees of domain-specific and cross-domain connections. Measures of syntactic complexity were closely related while syntactic diversity appeared to be a separate node outside of the syntactic network. Cross-domain associations were more salient in more complex syntactic production.
RESUMO
Machine learning can be used to define subtypes of psychiatric conditions based on shared clinical and biological foundations, presenting a crucial step toward establishing biologically based subtypes of mental disorders. With the goal of identifying subtypes of disease progression in schizophrenia, here we analyzed cross-sectional brain structural magnetic resonance imaging (MRI) data from 4,291 individuals with schizophrenia (1,709 females, age=32.5 years±11.9) and 7,078 healthy controls (3,461 females, age=33.0 years±12.7) pooled across 41 international cohorts from the ENIGMA Schizophrenia Working Group, non-ENIGMA cohorts and public datasets. Using a machine learning approach known as Subtype and Stage Inference (SuStaIn), we implemented a brain imaging-driven classification that identifies two distinct neurostructural subgroups by mapping the spatial and temporal trajectory of gray matter (GM) loss in schizophrenia. Subgroup 1 (n=2,622) was characterized by an early cortical-predominant loss (ECL) with enlarged striatum, whereas subgroup 2 (n=1,600) displayed an early subcortical-predominant loss (ESL) in the hippocampus, amygdala, thalamus, brain stem and striatum. These reconstructed trajectories suggest that the GM volume reduction originates in the Broca's area/adjacent fronto-insular cortex for ECL and in the hippocampus/adjacent medial temporal structures for ESL. With longer disease duration, the ECL subtype exhibited a gradual worsening of negative symptoms and depression/anxiety, and less of a decline in positive symptoms. We confirmed the reproducibility of these imaging-based subtypes across various sample sites, independent of macroeconomic and ethnic factors that differed across these geographic locations, which include Europe, North America and East Asia. These findings underscore the presence of distinct pathobiological foundations underlying schizophrenia. This new imaging-based taxonomy holds the potential to identify a more homogeneous sub-population of individuals with shared neurobiological attributes, thereby suggesting the viability of redefining existing disorder constructs based on biological factors.