Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chem Soc Rev ; 51(1): 128-152, 2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-34762084

RESUMO

Biomacromolecular therapeutic agents, particularly proteins, antigens, enzymes, and nucleic acids are emerging as powerful candidates for the treatment of various diseases and the development of the recent vaccine based on mRNA highlights the enormous potential of this class of drugs for future medical applications. However, biomacromolecular therapeutic agents present an enormous delivery challenge compared to traditional small molecules due to both a high molecular weight and a sensitive structure. Hence, the translation of their inherent pharmaceutical capacity into functional therapies is often hindered by the limited performance of conventional delivery vehicles. Polymer drug delivery systems are a modular solution able to address those issues. In this review, we discuss recent developments in the design of polymer delivery systems specifically tailored to the delivery challenges of biomacromolecular therapeutic agents. In the future, only in combination with a multifaceted and highly tunable delivery system, biomacromolecular therapeutic agents will realize their promising potential for the treatment of diseases and for the future of human health.


Assuntos
Ácidos Nucleicos , Preparações Farmacêuticas , Sistemas de Liberação de Medicamentos , Humanos , Polímeros , Proteínas
2.
Nature ; 538(7623): 79-83, 2016 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-27556943

RESUMO

Patterning of colloidal particles with chemically or topographically distinct surface domains (patches) has attracted intense research interest. Surface-patterned particles act as colloidal analogues of atoms and molecules, serve as model systems in studies of phase transitions in liquid systems, behave as 'colloidal surfactants' and function as templates for the synthesis of hybrid particles. The generation of micrometre- and submicrometre-sized patchy colloids is now efficient, but surface patterning of inorganic colloidal nanoparticles with dimensions of the order of tens of nanometres is uncommon. Such nanoparticles exhibit size- and shape-dependent optical, electronic and magnetic properties, and their assemblies show new collective properties. At present, nanoparticle patterning is limited to the generation of two-patch nanoparticles, and nanoparticles with surface ripples or a 'raspberry' surface morphology. Here we demonstrate nanoparticle surface patterning, which utilizes thermodynamically driven segregation of polymer ligands from a uniform polymer brush into surface-pinned micelles following a change in solvent quality. Patch formation is reversible but can be permanently preserved using a photocrosslinking step. The methodology offers the ability to control the dimensions of patches, their spatial distribution and the number of patches per nanoparticle, in agreement with a theoretical model. The versatility of the strategy is demonstrated by patterning nanoparticles with different dimensions, shapes and compositions, tethered with various types of polymers and subjected to different external stimuli. These patchy nanocolloids have potential applications in fundamental research, the self-assembly of nanomaterials, diagnostics, sensing and colloidal stabilization.

3.
Biomacromolecules ; 22(7): 2976-2984, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-34129319

RESUMO

Responsive nanogel systems are interesting for the drug delivery of bioactive molecules due to their high stability in aqueous media. The development of nanogels that are able to respond to biochemical cues and compatible with the encapsulation and the release of large and sensitive payloads remains challenging. Here, multistimuli-responsive nanogels were synthesized using a bio-orthogonal and reversible reaction and were designed for the selective release of encapsulated cargos in a spatiotemporally controlled manner. The nanogels were composed of a functionalized polysaccharide cross-linked with pH-responsive hydrazone linkages. The effect of the pH value of the environment on the nanogels was fully reversible, leading to a reversible control of the release of the payloads and a "stop-and-go" release profile. In addition to the pH-sensitive nature of the hydrazone network, the dextran backbone can be degraded through enzymatic cleavage. Furthermore, the cross-linkers were designed to be responsive to oxidoreductive cues. Disulfide groups, responsive to reducing environments, and thioketal groups, responsive to oxidative environments, were integrated into the nanogel network. The release of model payloads was investigated in response to changes in the pH value of the environment or to the presence of reducing or oxidizing agents.


Assuntos
Portadores de Fármacos , Concentração de Íons de Hidrogênio , Nanogéis , Oxirredução
4.
Biomacromolecules ; 21(7): 2764-2771, 2020 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-32530606

RESUMO

Bio-orthogonal reactions have become an essential tool to prepare biomaterials; for example, in the synthesis of nanocarriers, bio-orthogonal chemistry allows circumventing common obstacles related to the encapsulation of delicate payloads or the occurrence of uncontrolled side reactions, which significantly limit the range of potential payloads to encapsulate. Here, we report a new approach to prepare pH-responsive nanocarriers using dynamic bio-orthogonal chemistry. The reaction between a poly(hydrazide) crosslinker and functionalized polysaccharides was used to form a pH-responsive hydrazone network. The network formation occurred at the interface of aqueous nanodroplets in miniemulsion and led to the production of nanocapsules that were able to encapsulate payloads of different molecular weights. The resulting nanocapsules displayed low cytotoxicity and were able to release the encapsulated payload, in a controlled manner, under mildly acidic conditions.


Assuntos
Nanocápsulas , Materiais Biocompatíveis , Concentração de Íons de Hidrogênio , Polissacarídeos
5.
Macromol Rapid Commun ; 40(6): e1800713, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30536529

RESUMO

A reversible polymer photoacid with a thermal on/off switch at physiological temperature able to trigger a large pH modulation of its environment is prepared. Light is used to control the acidity of the solution. Additionally, the temperature could be used to modulate the photoacid efficiency, practically turning on and off the ability of the polymer to produce protons. The behavior of this thermoresponsive photoacid copolymer is the result of the combined action of the temperature-responsive N-isopropylacrylamide and of a reversible photoacid monomer based on a spiropyran derivative. The acidification of the aqueous medium is activated by irradiation at λ = 460 nm. The reverse reaction is achieved by removing the light stimuli or by exposing the solution to UV-light. Increasing the temperature above the lower critical solution temperature of the copolymer deactivates the photoacid and irradiation at λ = 460 nm does not lead to the generation of protons or to any detectable change in the pH value of the solution. Hence, the addition of N-isopropylacrylamide as a comonomer acts as a thermal on/off switch for the photoacid and the coupling of temperature-and light-responsiveness in the polyphotoacids yields a "thermophotoacid".


Assuntos
Polímeros/química , Prótons , Temperatura , Concentração de Íons de Hidrogênio , Substâncias Macromoleculares/química , Raios Ultravioleta
6.
Biomacromolecules ; 19(9): 3669-3681, 2018 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-30037226

RESUMO

Nontoxic alkanoylcholine soaps ( nACh) were synthesized from choline and fatty acids with numbers of carbons n equal to 12, 14, 16, and 18, the latter including both saturated and 9- cis unsaturated alkanoyl chains. Coupling of nACh with hyaluronic acid (HyA) rendered comblike ionic complexes nACh·HyA that were non-water-soluble. The complexes were thermally stable up to temperatures above 200 °C but readily degraded by water, in particular when hyaluronidases were present in the aqueous medium. In the solid state, these complexes were self-assembled in a biphasic layered structure in which the surfactant and the polysaccharide phases were alternating regularly with a periodicity dependent on the length of the alkanoyl chain. The paraffinic phase was found to be crystallized in saturated complexes with n ≥ 14, but only 18ACh·HyA showed reversible melting crystallization when subjected to cyclic heating-cooling treatment. Nanoparticles with diameters in the 50-150 nm range were prepared by ionotropic gelation from unbalanced 18ACh·HyA complexes with surfactant:HyA ratios of 0.5 and 0.25. These nanoparticles were also structured in layers, swelled slowly in water, and shown to be noncytotoxic in in vitro assays against macrophages cells. It was also shown that the anticancer drug doxorubicin was efficiently encapsulated in both films and NPs of 18ACh·HyA, and its release was shown to be almost linear and complete after one day of incubation in physiological medium. The nACh·HyA complexes constitute a highly promising biocompatible/biodegradable platform for the design of systems suitable for drug transport and targeting delivery in anticancer chemotherapy.


Assuntos
Colina/análogos & derivados , Sistemas de Liberação de Medicamentos/efeitos adversos , Ácido Hialurônico/análogos & derivados , Tensoativos/química , Animais , Morte Celular/efeitos dos fármacos , Camundongos , Nanopartículas/efeitos adversos , Nanopartículas/química , Células RAW 264.7 , Tensoativos/efeitos adversos
7.
Angew Chem Int Ed Engl ; 56(22): 6083-6087, 2017 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-27901307

RESUMO

Growth of three-dimensional cancer spheroids (CSs) in man-made hydrogels mimicking natural extracellular matrix is an important and challenging task. Herein, we report on a supramolecular temperature-responsive hydrogel designed for the growth and subsequent release of CSs. A filamentous hydrogel was formed at 37 °C from an aqueous suspension of cellulose nanocrystals surface-functionalized with temperature-responsive polymer molecules. The encapsulation of cells in the hydrogel enabled effective growth of CSs with dimensions determined by the concentration of cellulose nanocrystals in the hydrogel. On demand release of CSs without loss of cell viability and spheroid integrity was achieved upon hydrogel cooling. The tumorigenic properties of the released CSs were examined by encapsulating and re-growing them in fibrin hydrogel. The results in this work can be used in fundamental cancer research and in cancer drug screening.


Assuntos
Hidrogéis/química , Nanofibras/química , Neoplasias/patologia , Esferoides Celulares/citologia , Celulose/química , Temperatura Alta , Humanos , Células MCF-7 , Microscopia Eletrônica de Varredura
8.
Biomacromolecules ; 17(10): 3244-3251, 2016 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-27615746

RESUMO

Natural extracellular matrices often have a filamentous nature, however, only a limited number of artificial extracellular matrices have been designed from nanofibrillar building blocks. Here we report the preparation of temperature-responsive nanofibrillar hydrogels from rod-shaped cellulose nanocrystals (CNCs) functionalized with a copolymer of N-isopropylacrylamide and N,N'-dimethylaminoethyl methacrylate. The composition of the copolymer was tuned to achieve gelation of the suspension of copolymer-functionalized CNCs at 37 °C in cell culture medium and gel dissociation upon cooling it to room temperature. The mechanical properties and the structure of the hydrogel were controlled by changing copolymer composition and the CNC-to-copolymer mass ratio. The thermoreversible gels were used for the encapsulation and culture of fibroblasts and T cells and showed low cytotoxicity. Following cell culture, the cells were released from the gel by reducing the temperature, thus, enabling further cell characterization. These results pave the way for the generation of injectable temperature-responsive nanofibrillar hydrogels. The release of cells following their culture in the hydrogels would enable enhanced cell characterization and potential transfer in a different cell culture medium.


Assuntos
Acrilamidas/química , Etilaminas/química , Matriz Extracelular/efeitos dos fármacos , Hidrogéis/química , Metacrilatos/química , Acrilamidas/farmacologia , Celulose/química , Celulose/farmacologia , Meios de Cultura/química , Etilaminas/farmacologia , Fibroblastos/efeitos dos fármacos , Humanos , Hidrogéis/farmacologia , Metacrilatos/farmacologia , Nanopartículas/química , Polímeros/química , Polímeros/farmacologia , Linfócitos T/efeitos dos fármacos
9.
Faraday Discuss ; 191: 189-204, 2016 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-27465920

RESUMO

Linear assemblies of nanoparticles show promising applications due to their collective electronic, optical and magnetic properties. Rational design and controllable organization of nanoparticles in one-dimensional structures can strongly benefit from the marked similarity between conventional step-growth polymerization reactions and directional step-wise assembly of nanoparticles in linear chains. Here we show different aspects of the "polymerization" approach to the solution-based self-assembly of polymer-functionalized metal nanoparticles with different chemical compositions, shapes and dimensions. The self-assembly was triggered by inducing solvophobic attraction between polymer ligands, due to the change in solvent quality. We show that both anisotropic (patchy) nanoparticles and nanoparticles uniformly capped with polymer molecules can self-assemble in linear chains. We explore the control of chain length, morphology, and composition, discuss the ability to form isotropic and hierarchical structures and show the properties and potential applications of linear assemblies of plasmonic nanoparticles.

10.
Proc Natl Acad Sci U S A ; 110(47): 18775-9, 2013 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-24190993

RESUMO

A similarity between chemical reactions and self-assembly of nanoparticles offers a strategy that can enrich both the synthetic chemistry and the nanoscience fields. Synthetic methods should enable quantitative control of the structural characteristics of nanoparticle ensembles such as their aggregation number or directionality, whereas the capability to visualize and analyze emerging nanostructures using characterization tools can provide insight into intelligent molecular design and mechanisms of chemical reactions. We explored this twofold concept for an exemplary system including the polymerization of bifunctional nanoparticles in the presence of monofunctional colloidal chain stoppers. Using reaction-specific design rules, we synthesized chain stoppers with controlled reactivity and achieved quantitative fine-tuning of the self-assembled structures. Analysis of the nanostructures provided information about polymerization kinetics, side reactions, and the distribution of all of the species in the reaction system. A quantitative model was developed to account for the reactivity, kinetics, and side reactions of nanoparticles, all governed by the design of colloidal chain stoppers. This work provided the ability to test theoretical models developed for molecular polymerization.


Assuntos
Técnicas de Química Sintética/métodos , Coloides/química , Modelos Químicos , Nanopartículas/química , Nanotubos/química , Cinética , Polimerização
11.
Langmuir ; 31(18): 5033-41, 2015 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-25879581

RESUMO

Coassembly of nanoparticles with different size-, shape-, and composition-dependent properties is a promising approach to the design and fabrication of functional materials and devices. This paper reports the results of a detailed investigation of the formation and properties of free-stranding composite films formed by the coassembly of cellulose nanocrystals and shape-isotropic plasmonic gold nanoparticles. The effect of gold nanoparticle size, surface charge, and concentration on the structural and optical properties of the composite films has been studied. The composite films retained photonic crystal and chiroptical activity properties. The size and surface charge of gold nanoparticles had a minor effect on the structure and properties of the composite films, while the concentration of gold nanoparticles in the composite material played a more significant role and can be used to fine-tune the optical properties of materials derived from cellulose nanocrystals. These findings significantly broaden the range of nanoparticles that can be used for producing nanocomposite materials based on cellulose nanocrystals. The simplicity of film preparation, the abundance of cellulose nanocrystals, and the robust, free-standing nature of the composite films offer highly advantageous features and pave the way for the generation of functional materials with coupled optical properties.

12.
Biomacromolecules ; 16(8): 2455-62, 2015 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-26102157

RESUMO

Nanofibrillar hydrogels are an important class of biomaterials with applications as catalytic scaffolds, artificial extracellular matrixes, coatings, and drug delivery materials. In the present work, we report the results of a comprehensive study of nanofibrillar hydrogels formed by cellulose nanocrystals (CNCs) in the presence of cations with various charge numbers and ionic radii. We examined sol-gel transitions in aqueous CNC suspensions and the rheological and structural properties of the CNC hydrogels. At a particular CNC concentration, with increasing charge and cation size, the dynamic shear moduli and mesh size in the hydrogel increased. These effects were ascribed to a stronger propensity of CNCs for side-by-side association. The resulting hydrogels had an isotropic nanofibrillar structure. A combination of complementary techniques offered insight into structure-property relationships of CNC hydrogels, which are important for their potential applications.


Assuntos
Celulose/química , Matriz Extracelular/química , Hidrogéis/química , Nanopartículas/química , Materiais Biocompatíveis/química , Matriz Extracelular/metabolismo , Nanopartículas/ultraestrutura , Reologia , Relação Estrutura-Atividade , Suspensões/química
13.
Soft Matter ; 11(23): 4600-5, 2015 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-25978294

RESUMO

Rational design of the programmable soft matter requires understanding of the effect of a complex metric on shape transformations of thin non-Euclidean sheets. In the present work, we explored experimentally and using simulations how simultaneous or consecutive application of two orthogonal perturbations to thin patterned stimuli-responsive hydrogel sheets affects their three-dimensional shape transformations. The final shape of the sheet is governed by the metric, but not the order, in which the perturbations are applied to the system, and is determined by the competition of small-scale bidirectional stresses. In addition, a new, unexpected transition from a planar state to an equilibrium helical shape of the hydrogel sheet is observed via a mechanism that is yet to be explained.


Assuntos
Hidrogéis , Modelos Teóricos , Estresse Mecânico
14.
Nano Lett ; 14(11): 6314-21, 2014 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-25275879

RESUMO

Solution-based linear self-assembly of metal nanoparticles offers a powerful strategy for creating plasmonic polymers, which, so far, have been formed from spherical nanoparticles and cylindrical nanorods. Here we report linear solution-based self-assembly of metal nanocubes (NCs), examine the structural characteristics of the NC chains, and demonstrate their advanced optical characteristics. In comparison with chains of nanospheres with similar dimensions, composition, and surface chemistry, predominant face-to-face assembly of large NCs coated with short polymer ligands led to a larger volume of hot spots in the chains, a nearly uniform E-field enhancement in the gaps between colinear NCs, and a new coupling mode for NC chains due to the formation of a Fabry-Perot resonator structure formed by face-to-face bonded NCs. The NC chains exhibited stronger surface-enhanced Raman scattering in comparison with linear assemblies of nanospheres. The experimental results were in agreement with finite difference time domain simulations.

15.
Angew Chem Int Ed Engl ; 54(19): 5618-22, 2015 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-25777325

RESUMO

The entropically driven coassembly of nanorods (cellulose nanocrystals, CNCs) and nanospheres (dye-labeled spherical latex nanoparticles, NPs) was studied in aqueous suspensions and in solid films. In mixed CNC-latex suspensions, phase separation into an isotropic latex-NP-rich and a chiral nematic CNC-rich phase took place; the latter contained a significant amount of latex NPs. Drying the mixed suspension resulted in CNC-latex films with planar disordered layers of latex NPs, which alternated with chiral nematic CNC-rich regions. In addition, fluorescent latex NPs were embedded in the chiral nematic domains. The stratified morphology of the films, together with a random distribution of latex NPs in the anisotropic phase, led to the films having close-to-uniform fluorescence, birefringence, and circular dichroism properties.


Assuntos
Celulose/química , Corantes/química , Nanosferas/química , Nanotubos/química , Tamanho da Partícula , Propriedades de Superfície , Suspensões/química , Água/química
16.
Biomacromolecules ; 15(7): 2419-25, 2014 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-24931723

RESUMO

To develop an understanding of the nature of complex, spatiotemporal interactions between cells and the extracellular matrix (ECM), artificial ECMs formed from hydrogels with a particular spectrum of properties are being developed at a rapid pace. We report the microfluidic generation of small, monodisperse composite agarose-gelatin hydrogel modules (microgel particles) that can be used for cell encapsulation and can serve as instructive cellular microenvironments. The agarose component of the microgels gelled under reduced temperature, while gelatin modified with phenolic hydroxyl groups underwent peroxidase-catalyzed gelation. Microgel composition, structure, morphology, and rigidity were tuned in a high-throughput manner. The results of this work are important for the generation of libraries of cell-laden polymer microgels for single-cell analysis, tissue engineering, and fundamental studies of the role of local microenvironments in cell fate.


Assuntos
Biopolímeros/química , Hidrogéis/química , Fenômenos Mecânicos , Microfluídica , Matriz Extracelular/química , Gelatina/química , Sefarose/química , Análise de Célula Única , Engenharia Tecidual
17.
Angew Chem Int Ed Engl ; 53(10): 2648-53, 2014 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-24520012

RESUMO

The resemblance between colloidal and molecular polymerization reactions is very useful in fundamental studies of polymerization reactions, as well as in the development of new nanoscale systems with desired properties. Future applications of colloidal polymers will require nanoparticle ensembles with a high degree of complexity that can be realized by hetero-assembly of NPs with different dimensions, shapes, and compositions. A method has been developed to apply strategies from molecular copolymerization to the co-assembly of gold nanorods with different dimensions into random and block copolymer structures (plasmonic copolymers). The approach was extended to the co-assembly of random copolymers of gold and palladium nanorods. A kinetic model validated and further expanded the kinetic theories developed for molecular copolymerization reactions.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Paládio/química , Polímeros/síntese química , Coloides/síntese química , Coloides/química , Cinética , Polimerização , Polímeros/química
18.
J Am Chem Soc ; 135(12): 4834-9, 2013 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-23464872

RESUMO

Soft materials undergoing shape transformations in response to changes in ambient environment have potential applications in tissue engineering, robotics and biosensing. Generally, stimulus-responsive materials acquire two stable shapes corresponding to the "on" and "off" states of the external trigger. Here, we report a simple, yet versatile approach to induce multiple shape transformations of a planar hydrogel sheet, each triggered by a particular, well-defined external stimulus. The approach is based on the integration of small-scale multiple polymer components with distinct compositions in the composite gel sheet. In response to different stimuli, the structural components undergo differential swelling or shrinkage, which creates internal stresses within the composite hydrogel sheet and transforms its shape in a specific manner.

19.
J Am Chem Soc ; 135(28): 10262-5, 2013 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-23806016

RESUMO

Assembly of nanoscale materials from nanoparticle (NP) building blocks relies on our understanding of multiple nanoscale forces acting between NPs. These forces may compete with each other and yield distinct stimuli-responsive self-assembled nanostructures. Here, we report structural transitions between linear chains and globular assemblies of charged, polymer-stabilized gold NPs, which are governed by the competition of repulsive electrostatic forces and attractive poor solvency/hydrophobic forces. We propose a simple quantitative model and show that these transitions can be controlled by the quality of solvent, addition of a salt, and variation of the molecular weight of the polymer ligands.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Estrutura Molecular , Tamanho da Partícula , Propriedades de Superfície
20.
Adv Sci (Weinh) ; 10(18): e2207472, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37096844

RESUMO

A new straight forward approach to create nanoporous polymer membranes with well defined average pore diameters is presented. The method is based on fast mechanical deformation of highly entangled polymer films at high temperatures and a subsequent quench far below the glass transition temperature Tg . The process is first designed generally by simulation and then verified for the example of polystyrene films. The methodology does not need any chemical processing, supporting substrate, or self assembly process and is solely based on polymer inherent entanglement effects. Pore diameters are of the order of ten polymer reptation tube diameters. The resulting membranes are stable over months at ambient conditions and display remarkable elastic properties.


Assuntos
Nanoporos , Polímeros , Polímeros/química , Poliestirenos/química , Temperatura , Temperatura Alta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA