Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
New Phytol ; 234(3): 946-960, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35037256

RESUMO

Many plant leaves have two layers of photosynthetic tissue: the palisade and spongy mesophyll. Whereas palisade mesophyll consists of tightly packed columnar cells, the structure of spongy mesophyll is not well characterized and often treated as a random assemblage of irregularly shaped cells. Using micro-computed tomography imaging, topological analysis, and a comparative physiological framework, we examined the structure of the spongy mesophyll in 40 species from 30 genera with laminar leaves and reticulate venation. A spectrum of spongy mesophyll diversity encompassed two dominant phenotypes: first, an ordered, honeycomblike tissue structure that emerged from the spatial coordination of multilobed cells, conforming to the physical principles of Euler's law; and second, a less-ordered, isotropic network of cells. Phenotypic variation was associated with transitions in cell size, cell packing density, mesophyll surface-area-to-volume ratio, vein density, and maximum photosynthetic rate. These results show that simple principles may govern the organization and scaling of the spongy mesophyll in many plants and demonstrate the presence of structural patterns associated with leaf function. This improved understanding of mesophyll anatomy provides new opportunities for spatially explicit analyses of leaf development, physiology, and biomechanics.


Assuntos
Células do Mesofilo , Folhas de Planta , Tamanho Celular , Células do Mesofilo/fisiologia , Fotossíntese , Folhas de Planta/fisiologia , Microtomografia por Raio-X
2.
New Phytol ; 233(2): 851-861, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34614205

RESUMO

Conifers prevail in the canopies of many terrestrial biomes, holding a great ecological and economic importance globally. Current increases in temperature and aridity are imposing high transpirational demands and resulting in conifer mortality. Therefore, identifying leaf structural determinants of water use efficiency is essential for predicting physiological impacts due to environmental variation. Using synchrotron-generated microtomography imaging, we extracted leaf volumetric anatomy and stomatal traits in 34 species across conifers with a special focus on Pinus, the richest conifer genus. We show that intrinsic water use efficiency (WUEi ) is positively driven by leaf vein volume. Needle-like leaves of Pinus, as opposed to flat leaves or flattened needles of other genera, showed lower mesophyll porosity, decreasing the relative mesophyll volume. This led to increased ratios of stomatal pore number per mesophyll or intercellular airspace volume, which emerged as powerful explanatory variables, predicting both stomatal conductance and WUEi . Our results clarify how the three-dimensional organisation of tissues within the leaf has a direct impact on plant water use and carbon uptake. By identifying a suite of structural traits that influence important physiological functions, our findings can help to understand how conifers may respond to the pressures exerted by climate change.


Assuntos
Traqueófitas , Água , Cycadopsida , Fotossíntese , Folhas de Planta/fisiologia , Estômatos de Plantas/fisiologia
3.
Plant Cell Environ ; 45(5): 1362-1381, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35141930

RESUMO

Leaves balance CO2 and radiative absorption while maintaining water transport to maximise photosynthesis. Related species with contrasting leaf anatomy can provide insights into inherent and stress-induced links between structure and function for commonly measured leaf traits for important crops. We used two walnut species with contrasting mesophyll anatomy to evaluate these integrated exchange processes under non-stressed and drought conditions using a combination of light microscopy, X-ray microCT, gas exchange, hydraulic conductance, and chlorophyll distribution profiles through leaves. Juglans regia had thicker palisade mesophyll, higher fluorescence in the palisade, and greater low-mesophyll porosity that were associated with greater gas-phase diffusion (gIAS ), stomatal and mesophyll (gm ) conductances and carboxylation capacity. More and highly-packed mesophyll cells and bundle sheath extensions (BSEs) in Juglans microcarpa led to higher fluorescence in the spongy and in proximity to the BSEs. Both species exhibited drought-induced reductions in mesophyll cell volume, yet the associated increases in porosity and gIAS were obscured by declines in biochemical activity that decreased gm . Inherent differences in leaf anatomy between the species were linked to differences in gas exchange, light absorption and photosynthetic capacity, and drought-induced changes in leaf structure impacted performance via imposing species-specific limitations to light absorption, gas exchange and hydraulics.


Assuntos
Dióxido de Carbono , Dessecação , Células do Mesofilo , Fotossíntese , Folhas de Planta/anatomia & histologia
4.
Proc Biol Sci ; 288(1945): 20203145, 2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33622134

RESUMO

Maintaining high rates of photosynthesis in leaves requires efficient movement of CO2 from the atmosphere to the mesophyll cells inside the leaf where CO2 is converted into sugar. CO2 diffusion inside the leaf depends directly on the structure of the mesophyll cells and their surrounding airspace, which have been difficult to characterize because of their inherently three-dimensional organization. Yet faster CO2 diffusion inside the leaf was probably critical in elevating rates of photosynthesis that occurred among angiosperm lineages. Here we characterize the three-dimensional surface area of the leaf mesophyll across vascular plants. We show that genome size determines the sizes and packing densities of cells in all leaf tissues and that smaller cells enable more mesophyll surface area to be packed into the leaf volume, facilitating higher CO2 diffusion. Measurements and modelling revealed that the spongy mesophyll layer better facilitates gaseous phase diffusion while the palisade mesophyll layer better facilitates liquid-phase diffusion. Our results demonstrate that genome downsizing among the angiosperms was critical to restructuring the entire pathway of CO2 diffusion into and through the leaf, maintaining high rates of CO2 supply to the leaf mesophyll despite declining atmospheric CO2 levels during the Cretaceous.


Assuntos
Dióxido de Carbono , Células do Mesofilo , Tamanho Celular , Tamanho do Genoma , Fotossíntese , Folhas de Planta
5.
Plant Cell Environ ; 44(8): 2455-2465, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33974719

RESUMO

The leaf intercellular airspace is a tortuous environment consisting of cells of different shapes, packing densities, and orientation, all of which have an effect on the travelling distance of molecules from the stomata to the mesophyll cell surfaces. Tortuosity, the increase in displacement over the actual distance between two points, is typically defined as encompassing the whole leaf airspace, but heterogeneity in pore dimensions and orientation between the spongy and palisade mesophyll likely result in heterogeneity in tortuosity along different axes and would predict longer traveling distance along the path of least tortuosity, such as vertically within the columnar cell matrix of the palisade layer. Here, we compare a previously established geometric method to a random walk approach, novel for this analysis in plant leaves, in four different Eucalyptus species. The random walk method allowed us to quantify directional tortuosity across the whole leaf profile, and separately for the spongy and palisade mesophyll. For all species tortuosity was higher in the palisade mesophyll than the spongy mesophyll and horizontal (parallel to the epidermis) tortuosity was consistently higher than vertical (from epidermis to epidermis) tortuosity. We demonstrate that a random walk approach improves on previous geometric approaches and is valuable for investigating CO2 and H2 O transport within leaves.


Assuntos
Eucalyptus/anatomia & histologia , Folhas de Planta/anatomia & histologia , Folhas de Planta/citologia , Ar , Isótopos de Carbono/análise , Parede Celular/ultraestrutura , Eucalyptus/ultraestrutura , Imageamento Tridimensional , Células do Mesofilo/química , Microscopia Eletrônica de Varredura , Células Vegetais , Folhas de Planta/ultraestrutura , Estômatos de Plantas/anatomia & histologia
6.
J Exp Bot ; 72(12): 4384-4400, 2021 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-33739415

RESUMO

Mesophyll conductance (gm) determines the diffusion of CO2 from the substomatal cavities to the site of carboxylation in the chloroplasts and represents a critical component of the diffusive limitation of photosynthesis. In this study, we evaluated the average effect sizes of different environmental constraints on gm in Populus spp., a forest tree model. We collected raw data of 815 A-Ci response curves from 26 datasets to estimate gm, using a single curve-fitting method to alleviate method-related bias. We performed a meta-analysis to assess the effects of different abiotic stresses on gm. We found a significant increase in gm from the bottom to the top of the canopy that was concomitant with the increase of maximum rate of carboxylation and light-saturated photosynthetic rate (Amax). gm was positively associated with increases in soil moisture and nutrient availability, but was insensitive to increasing soil copper concentration and did not vary with atmospheric CO2 concentration. Our results showed that gm was strongly related to Amax and to a lesser extent to stomatal conductance (gs). Moreover, a negative exponential relationship was obtained between gm and specific leaf area, which may be used to scale-up gm within the canopy.


Assuntos
Populus , Dióxido de Carbono , Células do Mesofilo , Fotossíntese , Folhas de Planta , Estômatos de Plantas , Estresse Fisiológico
7.
Plant Physiol ; 178(1): 148-162, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30042212

RESUMO

The leaf intercellular airspace (IAS) is generally considered to have high conductance to CO2 diffusion relative to the liquid phase. While previous studies accounted for leaf-level variation in porosity and mesophyll thickness, they omitted 3D IAS traits that potentially influence IAS conductance (gIAS). Here, we reevaluated the standard equation for gIAS by incorporating tortuosity, lateral path lengthening, and IAS connectivity. We measured and spatially mapped these geometric IAS traits for 19 Bromeliaceae species with Crassulacean acid metabolism (CAM) or C3 photosynthetic pathways using x-ray microcomputed tomography imaging and a novel computational approach. We found substantial variation in porosity (0.04-0.73 m3 m-3), tortuosity (1.09-3.33 m2 m-2), lateral path lengthening (1.12-3.19 m m-1), and IAS connectivity (0.81-0.97 m2 m-2) across all bromeliad leaves. The revised gIAS model predicted significantly lower gIAS in CAM (0.01-0.19 mol m-2 s-1 bar-1) than in C3 (0.41-2.38 mol m-2 s-1 bar-1) plants due to a coordinated decline in these IAS traits. Our reevaluated equation also generally predicted lower gIAS values than the former one. Moreover, we observed high spatial heterogeneity in these IAS geometric traits throughout the mesophyll, especially within CAM leaves. Our data show that IAS traits that better capture the 3D complexity of leaves strongly influence gIAS and that the impact of the IAS on mesophyll conductance should be carefully considered with respect to leaf anatomy. We provide a simple function to estimate tortuosity and lateral path lengthening in the absence of access to imaging tools such as x-ray microcomputed tomography or other novel 3D image-processing techniques.


Assuntos
Bromeliaceae/metabolismo , Dióxido de Carbono/metabolismo , Células do Mesofilo/metabolismo , Folhas de Planta/metabolismo , Algoritmos , Bromeliaceae/classificação , Bromeliaceae/genética , Difusão , Fotossíntese , Filogenia , Folhas de Planta/anatomia & histologia , Folhas de Planta/citologia , Porosidade , Especificidade da Espécie , Microtomografia por Raio-X
8.
Plant Physiol ; 174(2): 1082-1096, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28432257

RESUMO

In agricultural and natural systems, diffuse light can enhance plant primary productivity due to deeper penetration into and greater irradiance of the entire canopy. However, for individual sun-grown leaves from three species, photosynthesis is actually less efficient under diffuse compared with direct light. Despite its potential impact on canopy-level productivity, the mechanism for this leaf-level diffuse light photosynthetic depression effect is unknown. Here, we investigate if the spatial distribution of light absorption relative to electron transport capacity in sun- and shade-grown sunflower (Helianthus annuus) leaves underlies its previously observed diffuse light photosynthetic depression. Using a new one-dimensional porous medium finite element gas-exchange model parameterized with light absorption profiles, we found that weaker penetration of diffuse versus direct light into the mesophyll of sun-grown sunflower leaves led to a more heterogenous saturation of electron transport capacity and lowered its CO2 concentration drawdown capacity in the intercellular airspace and chloroplast stroma. This decoupling of light availability from photosynthetic capacity under diffuse light is sufficient to generate an 11% decline in photosynthesis in sun-grown but not shade-grown leaves, primarily because thin shade-grown leaves similarly distribute diffuse and direct light throughout the mesophyll. Finally, we illustrate how diffuse light photosynthetic depression could overcome enhancement in canopies with low light extinction coefficients and/or leaf area, pointing toward a novel direction for future research.


Assuntos
Absorção de Radiação , Dióxido de Carbono/metabolismo , Helianthus/fisiologia , Helianthus/efeitos da radiação , Luz , Células do Mesofilo/metabolismo , Células do Mesofilo/efeitos da radiação , Fotossíntese/efeitos da radiação , Cloroplastos/metabolismo , Cloroplastos/efeitos da radiação , Transporte de Elétrons/efeitos da radiação , Complexo de Proteína do Fotossistema II/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação , Probabilidade
9.
New Phytol ; 215(4): 1609-1622, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28691233

RESUMO

The mesophyll surface area exposed to intercellular air space per leaf area (Sm ) is closely associated with CO2 diffusion and photosynthetic rates. Sm is typically estimated from two-dimensional (2D) leaf sections and corrected for the three-dimensional (3D) geometry of mesophyll cells, leading to potential differences between the estimated and actual cell surface area. Here, we examined how 2D methods used for estimating Sm compare with 3D values obtained from high-resolution X-ray microcomputed tomography (microCT) for 23 plant species, with broad phylogenetic and anatomical coverage. Relative to 3D, uncorrected 2D Sm estimates were, on average, 15-30% lower. Two of the four 2D Sm methods typically fell within 10% of 3D values. For most species, only a few 2D slices were needed to accurately estimate Sm within 10% of the whole leaf sample median. However, leaves with reticulate vein networks required more sections because of a more heterogeneous vein coverage across slices. These results provide the first comparison of the accuracy of 2D methods in estimating the complex 3D geometry of internal leaf surfaces. Because microCT is not readily available, we provide guidance for using standard light microscopy techniques, as well as recommending standardization of reporting Sm values.


Assuntos
Bromeliaceae/anatomia & histologia , Imageamento Tridimensional , Células do Mesofilo/metabolismo , Bromeliaceae/fisiologia , Propriedades de Superfície , Microtomografia por Raio-X
10.
Plant Cell Environ ; 40(5): 726-740, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28039917

RESUMO

Mesophyll conductance to CO2 (gm ) may respond to light either through regulated dynamic mechanisms or due to anatomical and structural factors. At low light, some layers of cells in the leaf cross-section approach photocompensation and contribute minimally to bulk leaf photosynthesis and little to whole leaf gm (gm,leaf ). Thus, the bulk gm,leaf will appear to respond to light despite being based upon cells having an anatomically fixed mesophyll conductance. Such behaviour was observed in species with contrasting leaf structure using the variable J or stable isotope method of measuring gm,leaf . A species with bifacial structure, Arbutus × 'Marina', and an isobilateral species, Triticum durum L., had contrasting responses of gm,leaf upon varying adaxial or abaxial illumination. Anatomical observations, when coupled with the proposed model of gm,leaf to photosynthetic photon flux density (PPFD) response, successfully represented the observed gas exchange data. The theoretical and observed evidence that gm,leaf apparently responds to light has large implications for how gm,leaf values are interpreted, particularly limitation analyses, and indicates the importance of measuring gm under full light saturation. Responses of gm,leaf to the environment should be treated as an emergent property of a distributed 3D structure, and not solely a leaf area-based phenomenon.


Assuntos
Ericaceae/anatomia & histologia , Luz , Células do Mesofilo/fisiologia , Células do Mesofilo/efeitos da radiação , Folhas de Planta/anatomia & histologia , Folhas de Planta/efeitos da radiação , Triticum/anatomia & histologia , Simulação por Computador , Ericaceae/fisiologia , Ericaceae/efeitos da radiação , Modelos Biológicos , Fótons , Fotossíntese/efeitos da radiação , Folhas de Planta/fisiologia , Reprodutibilidade dos Testes , Triticum/fisiologia , Triticum/efeitos da radiação
12.
J Exp Bot ; 65(2): 741-53, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24368507

RESUMO

Mesophyll conductance (gm) has been shown to impose significant limitations to net CO2 assimilation (A) in various species during water stress. Net CO2 assimilation is also limited by stomatal conductance to water (gsw), both having been shown to co-vary with leaf hydraulic conductance (Kleaf). Lately, several studies have suggested a close functional link between Kleaf, gsw, and gm. However, such relationships could only be circumstantial since a recent study has shown that the response of gm to drought could merely be an artefactual consequence of a reduced intercellular CO2 mole fraction (Ci). Experiments were conducted on 8-week-old hybrid poplar cuttings to determine the relationship between Kleaf, gsw, and g m in clones of contrasting drought tolerance. It was hypothesized that changes in gsw and Kleaf in response to drought would not impact on gm over most of its range. The results show that Kleaf decreased in concert with g sw as drought proceeded, whereas gm measured at a normalized Ci remained relatively constant up to a g sw threshold of ~0.15 mol m(-2) s(-1). This delayed gm response prevented a substantial decline in A at the early stage of the drought, thereby enhancing water use efficiency. Reducing the stomatal limitation of droughted plants by diminishing the ambient CO2 concentration of the air did not modify gm or Kleaf. The relationship between gas exchange and leaf hydraulics was similar in both drought-tolerant and drought-sensitive clones despite their contrasting vulnerability to stem cavitation and stomatal response to soil drying. The results support the hypothesis of a partial hydraulic isolation of the mesophyll from the main transpiration pathway.


Assuntos
Dióxido de Carbono/metabolismo , Dessecação , Hibridização Genética , Células do Mesofilo/metabolismo , Transpiração Vegetal/fisiologia , Populus/fisiologia , Solo , Calibragem , Dióxido de Carbono/farmacologia , Clorofila/metabolismo , Células Clonais , Secas , Transporte de Elétrons/efeitos dos fármacos , Fluorescência , Fotossíntese/efeitos dos fármacos , Caules de Planta/efeitos dos fármacos , Caules de Planta/fisiologia , Estômatos de Plantas/fisiologia , Transpiração Vegetal/efeitos dos fármacos , Populus/efeitos dos fármacos , Água
13.
AoB Plants ; 15(2): plad001, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36959914

RESUMO

Leaves grown at different light intensities exhibit considerable differences in physiology, morphology and anatomy. Because plant leaves develop over three dimensions, analyses of the leaf structure should account for differences in lengths, surfaces, as well as volumes. In this manuscript, we set out to disentangle the mesophyll surface area available for diffusion per leaf area (S m,LA) into underlying one-, two- and three-dimensional components. This allowed us to estimate the contribution of each component to S m,LA, a whole-leaf trait known to link structure and function. We introduce the novel concept of a 'stomatal vaporshed,' i.e. the intercellular airspace unit most closely connected to a single stoma, and use it to describe the stomata-to-diffusive-surface pathway. To illustrate our new theoretical framework, we grew two cultivars of Vitis vinifera L. under high and low light, imaged 3D leaf anatomy using microcomputed tomography (microCT) and measured leaf gas exchange. Leaves grown under high light were less porous and thicker. Our analysis showed that these two traits and the lower S m per mesophyll cell volume (S m,Vcl) in sun leaves could almost completely explain the difference in S m,LA. Further, the studied cultivars exhibited different responses in carbon assimilation per photosynthesizing cell volume (A Vcl). While Cabernet Sauvignon maintained A Vcl constant between sun and shade leaves, it was lower in Blaufränkisch sun leaves. This difference may be related to genotype-specific strategies in building the stomata-to-diffusive-surface pathway.

14.
J R Soc Interface ; 19(197): 20220602, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36475391

RESUMO

The spongy mesophyll is a complex, porous tissue found in plant leaves that enables carbon capture and provides mechanical stability. Unlike many other biological tissues, which remain confluent throughout development, the spongy mesophyll must develop from an initially confluent tissue into a tortuous network of cells with a large proportion of intercellular airspace. How the airspace in the spongy mesophyll develops while the tissue remains mechanically stable is unknown. Here, we use computer simulations of deformable polygons to develop a purely mechanical model for the development of the spongy mesophyll tissue. By stipulating that cell wall growth and remodelling occurs only near void space, our computational model is able to recapitulate spongy mesophyll development observed in Arabidopsis thaliana leaves. We find that robust generation of pore space in the spongy mesophyll requires a balance of cell growth, adhesion, stiffness and tissue pressure to ensure cell networks become porous yet maintain mechanical stability. The success of this mechanical model of morphogenesis suggests that simple physical principles can coordinate and drive the development of complex plant tissues like the spongy mesophyll.

15.
Appl Plant Sci ; 8(7): e11380, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32765979

RESUMO

PREMISE: X-ray microcomputed tomography (microCT) can be used to measure 3D leaf internal anatomy, providing a holistic view of tissue organization. Previously, the substantial time needed for segmenting multiple tissues limited this technique to small data sets, restricting its utility for phenotyping experiments and limiting our confidence in the inferences of these studies due to low replication numbers. METHODS AND RESULTS: We present a Python codebase for random forest machine learning segmentation and 3D leaf anatomical trait quantification that dramatically reduces the time required to process single-leaf microCT scans into detailed segmentations. By training the model on each scan using six hand-segmented image slices out of >1500 in the full leaf scan, it achieves >90% accuracy in background and tissue segmentation. CONCLUSIONS: Overall, this 3D segmentation and quantification pipeline can reduce one of the major barriers to using microCT imaging in high-throughput plant phenotyping.

16.
Evol Appl ; 13(9): 2422-2438, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33005231

RESUMO

Understanding how tree species will respond to a future climate requires reliable and quantitative estimates of intra-specific variation under current climate conditions. We studied three 10-year-old common garden experiments established across a rainfall and drought gradient planted with nearly 10,000 pedunculate oak (Quercus robur L.) trees from ten provenances with known family structure. We aimed at disentangling adaptive and plastic responses for growth (height and diameter at breast height) as well as for leaf and wood functional traits related to adaptation to dry environments. We used restricted maximum likelihood approaches to assess additive genetic variation expressed as narrow-sense heritability (h2), quantitative trait differentiation among provenances (QST), and genotype-by-environment interactions (GxE). We found strong and significant patterns of local adaptation in growth in all three common gardens, suggesting that transfer of seed material should not exceed a climatic distance of approximately 1°C under current climatic conditions, while transfer along precipitation gradients seems to be less stringent. Moreover, heritability reached 0.64 for tree height and 0.67 for dbh at the dry margin of the testing spectrum, suggesting significant additive genetic variation of potential use for future selection and tree breeding. GxE interactions in growth were significant and explained less phenotypic variation than origin of seed source (4% versus 10%). Functional trait variation among provenances was partly related to drought regimes at provenances origins but had moderate explanatory power for growth. We conclude that directional selection, either naturally or through breeding, is the most likely and feasible outcome for pedunculate oak to adapt to warmer and drier climate conditions in the future.

17.
Sci Rep ; 7(1): 3265, 2017 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-28607358

RESUMO

Trees experience two distinct environments: thermally-variable air and thermally-buffered soil. This generates intra-tree temperature gradients, which can affect carbon metabolism and water transport. In this study, we investigated whether carbohydrate allocation within trees is assisted by temperature gradients. We studied pistachio (Pistacia integerrima) to determine: (1) temperature-induced variation in xylem sugar concentration in excised branches; (2) changes in carbon allocation in young trees under simulated spring and fall conditions; and (3) seasonal variability of starch levels in mature orchard trees under field conditions. We found that warm branches had less sugar in perfused sap than cold branches due to increasing parenchyma storage. Simulated spring conditions promoted allocation of carbohydrates from cold roots to warm canopy and explained why starch levels surged in canopies of orchard trees during early spring. This driving force of sugar transport is interrupted in fall when canopies are colder than roots and carbohydrate redistribution is compartmentalized. On the basis of these findings, we propose a new mechanistic model of temperature-assisted carbohydrate allocation that links environmental cues and tree phenology. This data-enabled model provides insights into thermal "fine-tuning" of carbohydrate metabolism and a warning that the physiological performance of trees might be impaired by climatic changes.


Assuntos
Metabolismo dos Carboidratos , Temperatura , Árvores/fisiologia , Transporte Biológico , Estações do Ano , Xilema/metabolismo
18.
Tree Physiol ; 35(2): 172-84, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25721370

RESUMO

Improvement of water use efficiency is a key objective to improve the sustainability of cultivated plants, especially fast growing species with high water consumption like poplar. It is well known that water use efficiency (WUE) varies considerably among poplar genotypes, and it was recently suggested that the use of the mesophyll-to-stomatal conductance ratio (gm/gs) would be an appropriate trait to improve WUE. The responses of 7-week-old cuttings of four hybrid poplar clones and one native Balsam poplar (Populus balsamifera L.) to a water stress-recovery cycle were examined to evaluate the relation between the gm/gs ratio and transpiration efficiency (TE), a leaf-level component of WUE. A contrasting gs response to water stress was observed among the five clones, from stomatal closure early on during soil drying up to limited closure in Balsam poplar. However in the hybrids, the decline in gm was consistently delayed by a few days compared with gs. Moreover, in the most water use-efficient hybrids, the recovery following rehydration occurred faster for gm than for gs. Thus, the delay in the response of gm to drought and its faster recovery upon rewatering increased the gm/gs of the hybrids and this ratio scaled positively with TE. Our results support the use of the gm/gs ratio to select genotypes with improved WUE, and the notion that breeding strategies focusing mainly on stomatal responses to soil drying should also look for a strong curvilinearity between net carbon assimilation rate and gs, the indication of a significant increase in gm/gs in the earlier stages of stomatal closure.


Assuntos
Adaptação Fisiológica/genética , Secas , Fotossíntese , Folhas de Planta/fisiologia , Transpiração Vegetal , Populus/genética , Água/fisiologia , Irrigação Agrícola , Carbono/metabolismo , Genótipo , Folhas de Planta/metabolismo , Estômatos de Plantas , Populus/metabolismo , Populus/fisiologia , Solo , Estresse Fisiológico/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA