Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Glia ; 68(9): 1891-1909, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32119167

RESUMO

In vertebrates, fast saltatory conduction along myelinated axons relies on the node of Ranvier. How nodes assemble on CNS neurons is not yet fully understood. We previously described that node-like clusters can form prior to myelin deposition in hippocampal GABAergic neurons and are associated with increased conduction velocity. Here, we used a live imaging approach to characterize the intrinsic mechanisms underlying the assembly of these clusters prior to myelination. We first demonstrated that their components can partially preassemble prior to membrane targeting and determined the molecular motors involved in their trafficking. We then demonstrated the key role of the protein ß2Nav for node-like clustering initiation. We further assessed the fate of these clusters when myelination proceeds. Our results shed light on the intrinsic mechanisms involved in node-like clustering prior to myelination and unravel a potential role of these clusters in node of Ranvier formation and in guiding myelination onset.


Assuntos
Axônios , Neurônios GABAérgicos , Animais , Sistema Nervoso Central , Análise por Conglomerados , Bainha de Mielina , Nós Neurofibrosos
2.
Glia ; 67(12): 2248-2263, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31328333

RESUMO

The fast and reliable propagation of action potentials along myelinated fibers relies on the clustering of voltage-gated sodium channels at nodes of Ranvier. Axo-glial communication is required for assembly of nodal proteins in the central nervous system, yet the underlying mechanisms remain poorly understood. Oligodendrocytes are known to support node of Ranvier assembly through paranodal junction formation. In addition, the formation of early nodal protein clusters (or prenodes) along axons prior to myelination has been reported, and can be induced by oligodendrocyte conditioned medium (OCM). Our recent work on cultured hippocampal neurons showed that OCM-induced prenodes are associated with an increased conduction velocity (Freeman et al., 2015). We here unravel the nature of the oligodendroglial secreted factors. Mass spectrometry analysis of OCM identified several candidate proteins (i.e., Contactin-1, ChL1, NrCAM, Noelin2, RPTP/Phosphacan, and Tenascin-R). We show that Contactin-1 combined with RPTP/Phosphacan or Tenascin-R induces clusters of nodal proteins along hippocampal GABAergic axons. Furthermore, Contactin-1-immunodepleted OCM or OCM from Cntn1-null mice display significantly reduced clustering activity, that is restored by addition of soluble Contactin-1. Altogether, our results identify Contactin-1 secreted by oligodendrocytes as a novel factor that may influence early steps of nodal sodium channel cluster formation along specific axon populations.


Assuntos
Contactina 1/metabolismo , Hipocampo/metabolismo , Proteína Nodal/metabolismo , Oligodendroglia/metabolismo , Animais , Células Cultivadas , Sistema Nervoso Central/citologia , Sistema Nervoso Central/metabolismo , Contactina 1/genética , Neurônios GABAérgicos/metabolismo , Hipocampo/citologia , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Proteína Nodal/genética , Ligação Proteica/fisiologia , Ratos , Ratos Sprague-Dawley , Ratos Wistar
3.
Stem Cell Reports ; 19(4): 515-528, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38518783

RESUMO

In most vertebrates, adult neural stem cells (NSCs) continuously give rise to neurons in discrete brain regions. A critical process for maintaining NSC pools over long periods of time in the adult brain is NSC quiescence, a reversible and tightly regulated state of cell-cycle arrest. Recently, lysosomes were identified to regulate the NSC quiescence-proliferation balance. However, it remains controversial whether lysosomal activity promotes NSC proliferation or quiescence, and a finer influence of lysosomal activity on NSC quiescence duration or depth remains unexplored. Using RNA sequencing and pharmacological manipulations, we show that lysosomes are necessary for NSC quiescence maintenance. In addition, we reveal that expression of psap, encoding the lysosomal regulator Prosaposin, is enriched in quiescent NSCs (qNSCs) that reside upstream in the NSC lineage and display a deep/long quiescence phase in the adult zebrafish telencephalon. We show that shRNA-mediated psap knockdown increases the proportion of activated NSCs (aNSCs) as well as NSCs that reside in shallower quiescence states (signed by ascl1a and deltaA expression). Collectively, our results identify the lysosomal protein Psap as a (direct or indirect) quiescence regulator and unfold the interplay between lysosomal function and NSC quiescence heterogeneities.


Assuntos
Células-Tronco Adultas , Células-Tronco Neurais , Animais , Saposinas/genética , Saposinas/metabolismo , Peixe-Zebra/metabolismo , Telencéfalo/metabolismo , Encéfalo/metabolismo , Células-Tronco Neurais/metabolismo , Neurogênese/fisiologia , Células-Tronco Adultas/metabolismo
4.
Front Cell Neurosci ; 14: 42, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32180708

RESUMO

The plasticity of the central nervous system (CNS) in response to neuronal activity has been suggested as early as 1894 by Cajal (1894). CNS plasticity has first been studied with a focus on neuronal structures. However, in the last decade, myelin plasticity has been unraveled as an adaptive mechanism of importance, in addition to the previously described processes of myelin repair. Indeed, it is now clear that myelin remodeling occurs along with life and adapts to the activity of neuronal networks. Until now, it has been considered as a two-part dialog between the neuron and the oligodendroglial lineage. However, other glial cell types might be at play in myelin plasticity. In the present review, we first summarize the key structural parameters for myelination, we then describe how neuronal activity modulates myelination and finally discuss how other glial cells could participate in myelinic adaptivity.

5.
J Vis Exp ; (145)2019 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-30958468

RESUMO

In the nervous system, myelin is a complex membrane structure generated by myelinating glial cells, which ensheathes axons and facilitates fast electrical conduction. Myelin alteration has been shown to occur in various neurological diseases, where it is associated with functional deficits. Here, we provide a detailed description of an ex vivo model consisting of mouse organotypic cerebellar slices, which can be maintained in culture for several weeks and further be labeled to visualize myelin.


Assuntos
Cerebelo/citologia , Bainha de Mielina/metabolismo , Técnicas de Cultura de Órgãos/métodos , Coloração e Rotulagem , Animais , Células Cultivadas , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA