Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
BMC Genomics ; 21(1): 418, 2020 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-32571204

RESUMO

BACKGROUND: In bacteria, pan-genomes are the result of an evolutionary "tug of war" between selection and horizontal gene transfer (HGT). High rates of HGT increase the genetic pool and the effective population size (Ne), resulting in open pan-genomes. In contrast, selective pressures can lead to local adaptation by purging the variation introduced by HGT and mutation, resulting in closed pan-genomes and clonal lineages. In this study, we explored both hypotheses, elucidating the pan-genome of Vibrionaceae isolates after a perturbation event in the endangered oasis of Cuatro Ciénegas Basin (CCB), Mexico, and looking for signals of adaptation to the environments in their genomes. RESULTS: We obtained 42 genomes of Vibrionaceae distributed in six lineages, two of them did not showed any close reference strain in databases. Five of the lineages showed closed pan-genomes and were associated to either water or sediment environment; their high Ne estimates suggest that these lineages are not from a recent origin. The only clade with an open pan-genome was found in both environments and was formed by ten genetic groups with low Ne, suggesting a recent origin. The recombination and mutation estimators (r/m) ranged from 0.005 to 2.725, which are similar to oceanic Vibrionaceae estimations. However, we identified 367 gene families with signals of positive selection, most of them found in the core genome; suggesting that despite recombination, natural selection moves the Vibrionaceae CCB lineages to local adaptation, purging the genomes and keeping closed pan-genome patterns. Moreover, we identify 598 SNPs associated with an unstructured environment; some of the genes associated with these SNPs were related to sodium transport. CONCLUSIONS: Different lines of evidence suggest that the sampled Vibrionaceae, are part of the rare biosphere usually living under famine conditions. Two of these lineages were reported for the first time. Most Vibrionaceae lineages of CCB are adapted to their micro-habitats rather than to the sampled environments. This pattern of adaptation is concordant with the association of closed pan-genomes and local adaptation.


Assuntos
Polimorfismo de Nucleotídeo Único , Vibrionaceae/classificação , Vibrionaceae/fisiologia , Sequenciamento Completo do Genoma/métodos , Adaptação Fisiológica , Transferência Genética Horizontal , Genética Populacional , Genoma Bacteriano , Família Multigênica , Mutação , Filogenia , Densidade Demográfica , Seleção Genética , Vibrionaceae/genética , Vibrionaceae/isolamento & purificação
2.
BMC Bioinformatics ; 17(1): 260, 2016 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-27363390

RESUMO

BACKGROUND: Comparative analysis of whole genome sequence data from closely related prokaryotic species or strains is becoming an increasingly important and accessible approach for addressing both fundamental and applied biological questions. While there are number of excellent tools developed for performing this task, most scale poorly when faced with hundreds of genome sequences, and many require extensive manual curation. RESULTS: We have developed a de-novo genome analysis pipeline (DeNoGAP) for the automated, iterative and high-throughput analysis of data from comparative genomics projects involving hundreds of whole genome sequences. The pipeline is designed to perform reference-assisted and de novo gene prediction, homolog protein family assignment, ortholog prediction, functional annotation, and pan-genome analysis using a range of proven tools and databases. While most existing methods scale quadratically with the number of genomes since they rely on pairwise comparisons among predicted protein sequences, DeNoGAP scales linearly since the homology assignment is based on iteratively refined hidden Markov models. This iterative clustering strategy enables DeNoGAP to handle a very large number of genomes using minimal computational resources. Moreover, the modular structure of the pipeline permits easy updates as new analysis programs become available. CONCLUSION: DeNoGAP integrates bioinformatics tools and databases for comparative analysis of a large number of genomes. The pipeline offers tools and algorithms for annotation and analysis of completed and draft genome sequences. The pipeline is developed using Perl, BioPerl and SQLite on Ubuntu Linux version 12.04 LTS. Currently, the software package accompanies script for automated installation of necessary external programs on Ubuntu Linux; however, the pipeline should be also compatible with other Linux and Unix systems after necessary external programs are installed. DeNoGAP is freely available at https://sourceforge.net/projects/denogap/ .


Assuntos
Genoma , Genômica/métodos , Células Procarióticas/metabolismo , Software , Algoritmos , Sequência de Aminoácidos , Análise por Conglomerados , Biologia Computacional , Cadeias de Markov , Anotação de Sequência Molecular , Reprodutibilidade dos Testes , Homologia de Sequência do Ácido Nucleico
3.
Mol Plant Microbe Interact ; 29(4): 243-6, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26883489

RESUMO

Pseudomonas syringae is a diverse species-complex that includes many important crop pathogens. Here, we report the draft genomes of 62 type and pathotype strains, which provide a genomic reference for the diversity of this species complex and will contribute to the elucidation of the genomic basis of pathogenicity and host specificity.


Assuntos
Genoma Bacteriano/genética , Genômica , Doenças das Plantas/microbiologia , Plantas/microbiologia , Pseudomonas syringae/genética , Sequência de Bases , DNA Bacteriano/química , DNA Bacteriano/genética , Especificidade de Hospedeiro , Dados de Sequência Molecular , Pseudomonas syringae/patogenicidade , Análise de Sequência de DNA
4.
Proc Natl Acad Sci U S A ; 109(11): 4215-20, 2012 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-22323605

RESUMO

The innate immune system is an ancient and broad-spectrum defense system found in all eukaryotes. The detection of microbial elicitors results in the up-regulation of defense-related genes and the elicitation of inflammatory and apoptotic responses. These innate immune responses are the front-line barrier against disease because they collectively suppress the growth of the vast majority of invading microbes. Despite their critical role, we know remarkably little about the diversity of immune elicitors. To address this paucity, we reasoned that hosts are more likely to evolve recognition to "core" pathogen proteins under strong negative selection for the maintenance of essential cellular functions, whereas repeated exposure to host-defense responses will impose strong positive selective pressure for elicitor diversification to avoid host recognition. Therefore, we hypothesized that novel bacterial elicitors can be identified through these opposing forces of natural selection. We tested this hypothesis by examining the genomes of six bacterial phytopathogens and identifying 56 candidate elicitors that have an excess of positively selected residues in a background of strong negative selection. We show that these positively selected residues are atypically clustered, similar to patterns seen in the few well-characterized elicitors. We then validated selected candidate elicitors by showing that they induce Arabidopsis thaliana innate immunity in functional (virulence suppression) and cellular (callose deposition) assays. These finding provide targets for the study of host-pathogen interactions and applied research into alternative antimicrobial treatments.


Assuntos
Arabidopsis/genética , Arabidopsis/imunologia , Imunidade Inata/genética , Imunidade Vegetal/genética , Seleção Genética , Arabidopsis/microbiologia , Proteínas de Bactérias/imunologia , Códon/genética , Genoma de Planta/genética , Imunidade Inata/efeitos dos fármacos , Peptídeos/imunologia , Peptídeos/farmacologia , Imunidade Vegetal/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/imunologia , Folhas de Planta/microbiologia , Receptores de Reconhecimento de Padrão/metabolismo , Reprodutibilidade dos Testes , Seleção Genética/efeitos dos fármacos , Seleção Genética/genética , Virulência/efeitos dos fármacos , Virulência/genética , Virulência/imunologia
5.
Cancer Res ; 83(9): 1531-1542, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35503682

RESUMO

Amplification of HER2 can drive the proliferation of cancer cells, and several inhibitors of HER2 have been successfully developed. Recent advances in next-generation sequencing now reveal that HER2 is subject to mutation, with over 2,000 unique variants observed in human cancers. Several examples of oncogenic HER2 mutations have been described, and these primarily occur at allosteric sites outside the ATP-binding site. To identify the full spectrum of oncogenic HER2 driver mutations aside from a few well-studied mutations, we developed mutation-allostery-pharmacology (MAP), an in silico prediction algorithm based on machine learning. By applying this computational approach to 820 single-nucleotide variants, a list of 222 known and potential driver mutations was produced. Of these 222 mutations, 111 were screened by Ba/F3-retrovirus proliferation assays; 37 HER2 mutations were experimentally determined to be driver mutations, comprising 15 previously characterized and 22 newly identified oncogenic mutations. These oncogenic mutations mostly affected allosteric sites in the extracellular domain (ECD), transmembrane domain, and kinase domain of HER2, with only a single mutation in the HER2 orthosteric ATP site. Covalent homodimerization was established as a common mechanism of activation among HER2 ECD allosteric mutations, including the most prevalent HER2 mutation, S310F. Furthermore, HER2 allosteric mutants with enhanced covalent homodimerization were characterized by altered pharmacology that reduces the activity of existing anti-HER2 agents, including the mAb trastuzumab and the tyrosine kinase inhibitor lapatinib. Overall, the MAP-scoring and functional validation analyses provided new insights into the oncogenic activity and therapeutic targeting of HER2 mutations in cancer. SIGNIFICANCE: This study identified new oncogenic HER2 allosteric mutations, including ECD mutations that share covalent dimerization as a mechanism of oncogenicity, suggesting the need for novel inhibitors to treat HER2-mutant cancers.


Assuntos
Neoplasias , Receptor ErbB-2 , Humanos , Receptor ErbB-2/metabolismo , Quinazolinas/farmacologia , Regulação Alostérica , Neoplasias/genética , Inibidores de Proteínas Quinases/farmacologia , Mutação , Trifosfato de Adenosina
6.
BMC Microbiol ; 12: 141, 2012 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-22800299

RESUMO

BACKGROUND: Hazelnut (Corylus avellana) decline disease in Greece and Italy is caused by the convergent evolution of two distantly related lineages of Pseudomonas syringae pv. avellanae (Pav). We sequenced the genomes of three Pav isolates to determine if their convergent virulence phenotype had a common genetic basis due to either genetic exchange between lineages or parallel evolution. RESULTS: We found little evidence for horizontal transfer (recombination) of genes between Pav lineages, but two large genomic islands (GIs) have been recently acquired by one of the lineages. Evolutionary analyses of the genes encoding type III secreted effectors (T3SEs) that are translocated into host cells and are important for both suppressing and eliciting defense responses show that the two Pav lineages have dramatically different T3SE profiles, with only two shared putatively functional T3SEs. One Pav lineage has undergone unprecedented secretome remodeling, including the acquisition of eleven new T3SEs and the loss or pseudogenization of 15, including five of the six core T3SE families that are present in the other Pav lineage. Molecular dating indicates that divergence within both of the Pav lineages predates their observation in the field. This suggest that both Pav lineages have been cryptically infecting hazelnut trees or wild relatives for many years, and that the emergence of hazelnut decline in the 1970s may have been due to changes in agricultural practice. CONCLUSIONS: These data show that divergent lineages of P. syringae can converge on identical disease etiology on the same host plant using different virulence mechanisms and that dramatic shifts in the arsenal of T3SEs can accompany disease emergence.


Assuntos
Sistemas de Secreção Bacterianos/genética , Corylus/microbiologia , DNA Bacteriano/química , Genoma Bacteriano , Doenças das Plantas/microbiologia , Pseudomonas syringae/genética , Fatores de Virulência/genética , DNA Bacteriano/genética , Grécia , Itália , Dados de Sequência Molecular , Pseudomonas syringae/isolamento & purificação , Análise de Sequência de DNA
7.
BMC Genomics ; 10: 316, 2009 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-19604367

RESUMO

BACKGROUND: Magnaporthe oryzae, rice blast fungus, is the most devastating pathogen of rice. It has emerged as a model phytopathogen for the study of host-pathogen interactions. A large body of data has been generated on different aspects of biology of this fungus and on host-pathogen interactions. However, most of the data is scattered and is not available as a single resource for researchers in this field. DESCRIPTION: Genomic Resources of Magnaporthe oyzae (GROMO), is a specialized, and comprehensive database for rice blast fungus, integrating information from several resources. GROMO contains information on genomic sequence, mutants available, gene expression, localization of proteins obtained from a variety of repositories, as primary data. In addition, prediction of domains, pathways, protein-protein interactions, sumolyation sites and biochemical properties that were obtained after computational analysis of protein sequences have also been included as derived data. This database has an intuitive user interface that shall prompt the user to explore various possible information resources available on a given gene or a protein, from a single source. CONCLUSION: Currently, information on M. oryzae is available from different resources like BROAD MIT Magnaporthe database, Agrobacterium tumefaciens-mediated transformation (ATMT) M. oryzae database, Magnaporthe grisea--Oryza sativa (MGOS) and Massive Parallel Signature Sequencing (MPSS) databases. In the GROMO project, an effort has been made to integrate information from all these databases, derive some new data based on the available information analyzed by relevant programs and make more insightful predictions to better understand the biology of M. oryzae. The database is currently available at: http://gromo.msubiotech.ac.in/


Assuntos
Bases de Dados Genéticas , Genoma Fúngico , Magnaporthe/genética , Oryza/microbiologia , Biologia Computacional , Perfilação da Expressão Gênica , Internet , Doenças das Plantas/microbiologia , Domínios e Motivos de Interação entre Proteínas , Análise de Sequência de Proteína , Software , Interface Usuário-Computador
8.
Genome Biol ; 20(1): 3, 2019 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-30606234

RESUMO

BACKGROUND: Pseudomonas syringae is a highly diverse bacterial species complex capable of causing a wide range of serious diseases on numerous agronomically important crops. We examine the evolutionary relationships of 391 agricultural and environmental strains using whole-genome sequencing and evolutionary genomic analyses. RESULTS: We describe the phylogenetic distribution of all 77,728 orthologous gene families in the pan-genome, reconstruct the core genome phylogeny using the 2410 core genes, hierarchically cluster the accessory genome, identify the diversity and distribution of type III secretion systems and their effectors, predict ecologically and evolutionary relevant loci, and establish the molecular evolutionary processes operating on gene families. Phylogenetic and recombination analyses reveals that the species complex is subdivided into primary and secondary phylogroups, with the former primarily comprised of agricultural isolates, including all of the well-studied P. syringae strains. In contrast, the secondary phylogroups include numerous environmental isolates. These phylogroups also have levels of genetic diversity typically found among distinct species. An analysis of rates of recombination within and between phylogroups revealed a higher rate of recombination within primary phylogroups than between primary and secondary phylogroups. We also find that "ecologically significant" virulence-associated loci and "evolutionarily significant" loci under positive selection are over-represented among loci that undergo inter-phylogroup genetic exchange. CONCLUSIONS: While inter-phylogroup recombination occurs relatively rarely, it is an important force maintaining the genetic cohesion of the species complex, particularly among primary phylogroup strains. This level of genetic cohesion, and the shared plant-associated niche, argues for considering the primary phylogroups as a single biological species.


Assuntos
Evolução Molecular , Genoma Bacteriano , Filogenia , Pseudomonas syringae/genética , Variação Genética , Recombinação Genética , Seleção Genética , Sistemas de Secreção Tipo II/genética
9.
Sci Rep ; 7(1): 16133, 2017 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-29170530

RESUMO

The Xanthomonadaceae family consists of species of non-pathogenic and pathogenic γ-proteobacteria that infect different hosts, including humans and plants. In this study, we performed a comparative analysis using 69 fully sequenced genomes belonging to this family, with a focus on identifying proteins enriched in phytopathogens that could explain the lifestyle and the ability to infect plants. Using a computational approach, we identified seven phytopathogen-enriched protein families putatively secreted by type II secretory system: PheA (CM-sec), LipA/LesA, VirK, and four families involved in N-glycan degradation, NixE, NixF, NixL, and FucA1. In silico and phylogenetic analyses of these protein families revealed they all have orthologs in other phytopathogenic or symbiotic bacteria, and are involved in the modulation and evasion of the immune system. As a proof of concept, we performed a biochemical characterization of LipA from Xac306 and verified that the mutant strain lost most of its lipase and esterase activities and displayed reduced virulence in citrus. Since this study includes closely related organisms with distinct lifestyles and highlights proteins directly related to adaptation inside plant tissues, novel approaches might use these proteins as biotechnological targets for disease control, and contribute to our understanding of the coevolution of plant-associated bacteria.


Assuntos
Proteínas de Bactérias/metabolismo , Doenças das Plantas/microbiologia , Xanthomonadaceae/metabolismo , Xanthomonadaceae/patogenicidade , Proteínas de Bactérias/genética , Filogenia , Virulência
10.
Genome Biol ; 17: 98, 2016 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-27160854

RESUMO

BACKGROUND: The recognition of microbe-associated molecular patterns during infection is central to the mounting of an effective immune response. In spite of their importance, it remains difficult to identify these molecules and the host receptors required for their perception, ultimately limiting our understanding of the role of these molecules in the evolution of host-pathogen relationships. RESULTS: We employ a comparative genomics screen to identify six new immune eliciting peptides from the phytopathogenic bacterium Pseudomonas syringae. We then perform a reverse genetic screen to identify Arabidopsis thaliana leucine-rich repeat receptor-like kinases required for the recognition of these elicitors. We test the six elicitors on 187 receptor-like kinase knock-down insertion lines using a high-throughput peroxidase-based immune assay and identify multiple lines that show decreased immune responses to specific peptides. From this primary screen data, we focused on the interaction between the xup25 peptide from a bacterial xanthine/uracil permease and the Arabidopsis receptor-like kinase xanthine/uracil permease sensing 1; a family XII protein closely related to two well-characterized receptor-like kinases. We show that xup25 treatment increases pathogenesis-related gene induction, callose deposition, seedling growth inhibition, and resistance to virulent bacteria, all in a xanthine/uracil permease sensing 1-dependent manner. Finally, we show that this kinase-like receptor can bind the xup25 peptide directly. These results identify xup25 as a P. syringae microbe-associated molecular pattern and xanthine/uracil permease sensing 1 as a receptor-like kinase that detects the xup25 epitope to activate immune responses. CONCLUSIONS: The present study demonstrates an efficient method to identify immune elicitors and the plant receptors responsible for their perception. Further exploration of these molecules will increase our understanding of plant-pathogen interactions and the basis for host specificity.


Assuntos
Arabidopsis/genética , Genoma de Planta , Interações Hospedeiro-Patógeno/genética , Imunidade Vegetal/genética , Proteínas Quinases/genética , Receptores de Superfície Celular/genética , Arabidopsis/imunologia , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Perfilação da Expressão Gênica/métodos , Proteínas Quinases/metabolismo , Pseudomonas syringae/genética , Pseudomonas syringae/patogenicidade , Receptores de Superfície Celular/metabolismo
11.
BMC Res Notes ; 4: 356, 2011 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-21914200

RESUMO

BACKGROUND: Ricinus communis is an industrially important non-edible oil seed crop, native to tropical and subtropical regions of the world. Although, R. communis genome was assembled in 4X draft by JCVI, and is predicted to contain 31,221 proteins, the function of most of the genes remains to be elucidated. A large amount of information of different aspects of the biology of R. communis is available, but most of the data are scattered one not easily accessible. Therefore a comprehensive resource on Castor, Castor DB, is required to facilitate research on this important plant. FINDINGS: CastorDB is a specialized and comprehensive database for the oil seed plant R. communis, integrating information from several diverse resources. CastorDB contains information on gene and protein sequences, gene expression and gene ontology annotation of protein sequences obtained from a variety of repositories, as primary data. In addition, computational analysis was used to predict cellular localization, domains, pathways, protein-protein interactions, sumoylation sites and biochemical properties and has been included as derived data. This database has an intuitive user interface that prompts the user to explore various possible information resources available on a given gene or a protein. CONCLUSION: CastorDB provides a user friendly comprehensive resource on castor with particular emphasis on its genome, transcriptome, and proteome and on protein domains, pathways, protein localization, presence of sumoylation sites, expression data and protein interacting partners.

12.
Annu Rev Phytopathol ; 49: 269-89, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21568703

RESUMO

The phytopathogenic bacterium Pseudomonas syringae causes serious diseases in a wide range of important crop plants, with recent severe outbreaks on the New Zealand kiwifruit crop and among British horse chestnut trees. Next-generation genome sequencing of over 25 new strains has greatly broadened our understanding of how this species adapts to a diverse range of plant hosts. Not unexpectedly, the genomes were found to be highly dynamic, and extensive polymorphism was found in the distribution of type III secreted effectors (T3SEs) and other virulence-associated genes, even among strains within the same pathovar. An underexplored area brought to light by these data is the specific metabolic adaptations required for growth on woody hosts. These studies provide a tremendous wealth of candidates for more refined functional characterization, which is greatly enhancing our ability to disentangle the web of host-pathogen interactions that determine disease outcomes.


Assuntos
Evolução Biológica , Produtos Agrícolas/microbiologia , Genoma Bacteriano/genética , Genômica , Doenças das Plantas/microbiologia , Pseudomonas syringae/genética , Adaptação Fisiológica/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Especificidade de Hospedeiro , Interações Hospedeiro-Patógeno , Pseudomonas syringae/crescimento & desenvolvimento , Pseudomonas syringae/metabolismo , Pseudomonas syringae/patogenicidade , Análise de Sequência de DNA , Fatores de Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA