Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Appl Toxicol ; 39(2): 333-342, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30264499

RESUMO

Biofluid-based biomarkers provide an efficient tool for hazard identification of chemicals. Here, we explored the potential of microRNAs (miRNAs) as biomarkers for hepatotoxicity of chemicals by linking in vitro to in vivo animal models. A search of the literature identified candidate circulating miRNA biomarkers of chemical-induced hepatotoxicity. The expression of candidate miRNAs (miR-122, miR-151a, miR-192, miR-193a, miR-194, miR-21, miR-29c), was determined by real-time reverse transcription-polymerase chain reaction in in vivo acute liver injury induced by acetaminophen, and then were further compared with those of in vitro cell assays. Candidate miRNAs, except miR-29c, were significantly or biologically upregulated by acetaminophen, at a dose that caused acute liver injury as confirmed by hepatocellular necrosis. Except miR-122 and miR-193a, other miRNAs elevated in in vivo models were confirmed by in vitro models using HepG2 cells, whereas they failed by in vitro models using human primary hepatocytes. These findings indicate that certain miRNAs may still have the potential of toxicological biomarkers in linking in vitro to in vivo hepatotoxicity.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/sangue , Expressão Gênica/efeitos dos fármacos , Substâncias Perigosas/toxicidade , Hepatócitos/efeitos dos fármacos , MicroRNAs/sangue , Animais , Biomarcadores/sangue , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/patologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Células Hep G2 , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Masculino , MicroRNAs/genética , Ratos Sprague-Dawley , Regulação para Cima
2.
J Vet Sci ; 21(6): e81, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33263228

RESUMO

BACKGROUND: Although previous in vivo studies explored urinary microRNA (miRNA), there is no agreement on nephrotoxicity-specific miRNA biomarkers. OBJECTIVES: In this study, we assessed whether urinary miRNAs could be employed as biomarkers for nephrotoxicity. METHODS: For this, literature-based candidate miRNAs were identified by reviewing the previous studies. Female Sprague-Dawley rats received subcutaneous injections of a single dose or repeated doses (3 consecutive days) of gentamicin (GEN; 137 or 412 mg/kg). The expression of miRNAs was analyzed by real-time reverse transcription-polymerase chain reaction in 16 h pooled urine from GEN-treated rats. RESULTS: GEN-induced acute kidney injury was confirmed by the presence of tubular necrosis. We identified let-7g-5p, miR-21-3p, 26b-3p, 192-5p, and 378a-3p significantly upregulated in the urine of GEN-treated rats with the appearance of the necrosis in proximal tubules. Specifically, miR-26-3p, 192-5p, and 378a-3p with highly expressed levels in urine of rats with GEN-induced acute tubular injury were considered to have sensitivities comparable to clinical biomarkers, such as blood urea nitrogen, serum creatinine, and urinary kidney injury molecule protein. CONCLUSIONS: These results indicated the potential involvement of urinary miRNAs in chemical-induced nephrotoxicity, suggesting that certain miRNAs could serve as biomarkers for acute nephrotoxicity.


Assuntos
Injúria Renal Aguda/induzido quimicamente , Antibacterianos/toxicidade , Modelos Animais de Doenças , Gentamicinas/toxicidade , MicroRNAs/urina , Animais , Biomarcadores/urina , Feminino , Reação em Cadeia da Polimerase , Ratos , Ratos Sprague-Dawley
3.
Antimicrob Agents Chemother ; 47(9): 2978-80, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12937006

RESUMO

A new antibiotic resistance gene cluster comprising genes for sulfonamide (sul2), streptomycin (strA-strB), and tetracycline [tetR-tet(H)] resistance was detected on plasmid pVM111 from Pasteurella multocida. The tetR-tet(H) gene region was inserted between sul2 and strA, possibly by illegitimate recombination. Two potential recombination sites of 18 and 25 bp were identified.


Assuntos
Farmacorresistência Bacteriana/genética , Genes Bacterianos/genética , Família Multigênica/genética , Pasteurella multocida/efeitos dos fármacos , Pasteurella multocida/genética , Plasmídeos/genética , Sequência de Bases , Clonagem Molecular , Escherichia coli/genética , Dados de Sequência Molecular , Recombinação Genética/genética , Mapeamento por Restrição , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transformação Bacteriana/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA