Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
1.
Gene Ther ; 30(1-2): 115-121, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35606494

RESUMO

Intrinsic activity of aldehyde dehydrogenase (ALDH)2, a cardiac mitochondrial enzyme, is vital in detoxifying 4-hydroxy-2-nonenal (4HNE) like cellular reactive carbonyl species (RCS) and thereby conferring cardiac protection against pathological stress. It was also known that a single point mutation (E487K) in ALDH2 (prevalent in East Asians) known as ALDH2*2 reduces its activity intrinsically and was associated with increased cardiovascular diseases. We and others have shown that ALDH2 activity is reduced in several pathologies in WT animals as well. Thus, exogenous augmentation of ALDH2 activity is a good strategy to protect the myocardium from pathologies. In this study, we will test the efficacy of intracardiac injections of the ALDH2 gene in mice. We injected both wild type (WT) and ALDH2*2 knock-in mutant mice with ALDH2 constructs, AAv9-cTNT-hALDH2-HA tag-P2A-eGFP or their control constructs, AAv9-cTNT-eGFP. We found that intracardiac ALDH2 gene transfer increased myocardial levels of ALDH2 compared to GFP alone after 1 and 3 weeks. When we subjected the hearts of these mice to 30 min global ischemia and 90 min reperfusion (I-R) using the Langendorff perfusion system, we found reduced infarct size in the hearts of mice with ALDH2 gene vs GFP alone. A single time injection has shown increased myocardial ALDH2 activity for at least 3 weeks and reduced myocardial 4HNE adducts and infarct size along with increased contractile function of the hearts while subjected to I-R. Thus, ALDH2 overexpression protected the myocardium from I-R injury by reducing 4HNE protein adducts implicating increased 4HNE detoxification by ALDH2. In conclusion, intracardiac ALDH2 gene transfer is an effective strategy to protect the myocardium from pathological insults.


Assuntos
Miocárdio , Mutação Puntual , Camundongos , Animais , Miocárdio/metabolismo , Aldeído-Desidrogenase Mitocondrial/genética , Aldeído-Desidrogenase Mitocondrial/metabolismo , Mitocôndrias/metabolismo , Infarto/metabolismo
2.
FASEB J ; 36(8): e22440, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35815932

RESUMO

4-hydroxy-2-nonenal (4HNE), an oxidative stress byproduct, is elevated in diabetes which decreases coronary angiogenesis, and this was rescued by the 4HNE detoxifying enzyme, aldehyde dehydrogenase 2 (ALDH2). Adiponectin (APN), an adipocytokine, has pro-angiogenic properties and its loss of function is critical in diabetes and its complications. Coronary endothelial cell (CEC) damage is the initiating step of diabetes-mediated heart failure with preserved ejection fraction (HFpEF) pathogenesis. Thus, we hypothesize that ALDH2 restores 4HNE-induced downregulation of APN signaling in CECs and subsequent coronary angiogenesis in diabetic HFpEF. Treatment with disulfiram, an ALDH2 inhibitor, exacerbated 4HNE-mediated decreases in APN-induced increased coronary angiogenesis and APN-signaling cascades, whereas pretreatment with alda1, an ALDH2 activator, rescued the effect of 4HNE. We employed control mice (db/m), spontaneous type-2 diabetic mice (db/db), ALDH2*2 knock-in mutant mice with intrinsic low ALDH2 activity (AL), and diabetic mice with intrinsic low ALDH2 activity (AF) mice that were created by crossing db/db and AL mice to test our hypothesis in vivo. AF mice exhibited heart failure with preserved ejection fraction (HFpEF)/severe diastolic dysfunction at 6 months with a preserved systolic function compared with db/db mice as well as 3 months of their age. Decreased APN-mediated coronary angiogenesis, along with increased circulatory APN levels and decreased cardiac APN signaling (index of APN resistance) were higher in AF mice relative to db/db mice. Alda1 treatment improved APN-mediated angiogenesis in AF and db/db mice. In summary, 4HNE-induces APN resistance and a subsequent decrease in coronary angiogenesis in diabetic mouse heart which was rescued by ALDH2.


Assuntos
Diabetes Mellitus Experimental , Insuficiência Cardíaca , Adiponectina , Aldeído-Desidrogenase Mitocondrial/genética , Animais , Diabetes Mellitus Experimental/patologia , Camundongos , Volume Sistólico
3.
Biochem Biophys Res Commun ; 597: 109-114, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35134608

RESUMO

Alternative polyadenylation (APA) regulates gene expression by cleavage and addition of poly(A) sequence at different polyadenylation sites (PAS) in 3'UTR, thus, generating transcript isoforms with different lengths. Cleavage stimulating factor 64 (CstF64) is an APA regulator which plays a role in PAS selection and determines the length of 3'UTR. CstF64 favors the use of proximal PAS, resulting in 3'UTR shortening, which enhances the protein expression by increasing the stability of the target genes. The aim of this study is to investigate the role of CstF64 in cardiac fibrosis, a key event leading to heart failure (HF). We determined the expression of CstF64, key profibrotic genes, and their 3'UTR changes by calculating distal PAS (dPAS) usage in left ventricular (LV) tissues and cardiac fibroblasts from HF patients. CstF64 was upregulated in HF LV tissues and cardiac fibroblasts along with increased deposition of fibrosis genes such as COL1A and FN1 and significant shortening in their 3'UTR. In addition, HF cardiac fibroblasts showed increased transforming growth factor receptor ß1 (TGFßR1) expression consistent with significant shortening in 3'UTR of TGFßR1. Upon knockdown of CstF64 from HF fibroblasts, downregulation in pro-fibrotic genes corresponding to lengthening in their 3'UTR was observed. Our finding suggests an important role of CstF64 in myofibroblast activation and promotion of cardiac fibrosis during HF through APA. Therefore, targeting CstF64 mediated RNA processing approach in human HF could provide a new therapeutic treatment strategy for limiting fibrotic remodeling.

4.
Heart Fail Rev ; 27(5): 1779-1793, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-34826024

RESUMO

There has been ample data providing a convincing perception about the underlying mechanism pertaining to left ventricle (LV) hypertrophy progressing towards LV failure. In comparison, data available on the feedback of right ventricle (RV) due to volume or pressure overload is minimal. Advanced imaging techniques have aided the study of physiology, anatomy, and diseased state of RV. However, the treatment scenario of right ventricular failure (RVF) demands more attention. It is a critical clinical risk in patients with carcinoid syndrome, pulmonary hypertension, atrial septal defect, and several other concomitant diseases. Although the remodeling responses of both ventricles on an increase of end-diastolic pressure are mostly identical, the stressed RV becomes more prone to oxidative stress activating the apoptotic mechanism with diminished angiogenesis. This instigates the advancement of RV towards failure in contrast to LV. Empirical heart failure (HF) therapies have been ineffective in improving the mortality rate and cardiac function in patients, which prompted a difference between the underlying pathophysiology of RVF and LV failure. Treatment strategies should be devised, taking into consideration the anatomical and physiological characteristics of RV. This review would emphasize on the pathophysiology of the RVF and the differences between two ventricles in molecular response to stress. A proper insight into the underlying pathophysiology is required to develop optimized therapeutic management in RV-specific HF.


Assuntos
Insuficiência Cardíaca , Hipertensão Pulmonar , Disfunção Ventricular Direita , Comorbidade , Diástole , Insuficiência Cardíaca/complicações , Insuficiência Cardíaca/epidemiologia , Ventrículos do Coração/diagnóstico por imagem , Humanos , Função Ventricular Direita
5.
Int J Mol Sci ; 23(18)2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36142350

RESUMO

To ameliorate diabetes mellitus-associated heart failure with preserved ejection fraction (HFpEF), we plan to lower diabetes-mediated oxidative stress-induced 4-hydroxy-2-nonenal (4HNE) accumulation by pharmacological agents that either decrease 4HNE generation or increase its detoxification.A cellular reactive carbonyl species (RCS), 4HNE, was significantly increased in diabetic hearts due to a diabetes-induced decrease in 4HNE detoxification by aldehyde dehydrogenase (ALDH) 2, a cardiac mitochondrial enzyme that metabolizes 4HNE. Therefore, hyperglycemia-induced 4HNE is critical for diabetes-mediated cardiotoxicity and we hypothesize that lowering 4HNE ameliorates diabetes-associated HFpEF. We fed a high-fat diet to ALDH2*2 mice, which have intrinsically low ALDH2 activity, to induce type-2 diabetes. After 4 months of diabetes, the mice exhibited features of HFpEF along with increased 4HNE adducts, and we treated them with vehicle, empagliflozin (EMP) (3 mg/kg/d) to reduce 4HNE and Alda-1 (10 mg/kg/d), and ALDH2 activator to enhance ALDH2 activity as well as a combination of EMP + Alda-1 (E + A), via subcutaneous osmotic pumps. After 2 months of treatments, cardiac function was assessed by conscious echocardiography before and after exercise stress. EMP + Alda-1 improved exercise tolerance, diastolic and systolic function, 4HNE detoxification and cardiac liver kinase B1 (LKB1)-AMP-activated protein kinase (AMPK) pathways in ALDH2*2 mice with diabetes-associated HFpEF. This combination was even more effective than EMP alone. Our data indicate that ALDH2 activation along with the treatment of hypoglycemic agents may be a salient strategy to alleviate diabetes-associated HFpEF.


Assuntos
Diabetes Mellitus Tipo 2 , Insuficiência Cardíaca , Proteínas Quinases Ativadas por AMP/metabolismo , Aldeído Desidrogenase/metabolismo , Aldeído-Desidrogenase Mitocondrial/genética , Aldeído-Desidrogenase Mitocondrial/metabolismo , Animais , Compostos Benzidrílicos , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Glucosídeos , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/etiologia , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Camundongos , Volume Sistólico
6.
J Cell Physiol ; 236(4): 2950-2958, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32944935

RESUMO

Coronavirus disease-2019 (COVID-19) is a global pandemic and caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which has resulted in millions of deaths worldwide. Reports denote SARS-CoV-2 uses angiotensin-converting enzyme 2 (ACE2), transmembrane serine protease 2 (TMPRSS2) as its primary entry point into the host cell. However, understanding the biology behind this viral replication, disease mechanism and drug discovery efforts are limited due to the lack of a suitable experimental model. Here, we used single-cell RNA sequencing data of human organoids to analyze expressions of ACE2 and TMPRSS2, in addition to an array of RNA receptors to examine their role in SARS-CoV-2 pathogenesis. ACE2 is abundant in all organoids, except the prostate and brain, and TMPRSS2 is omnipresent. Innate immune pathways are upregulated in ACE2(+) cells of all organoids, except the lungs. Besides this, the expression of low-density lipoprotein receptor is highly enriched in ACE2(+) cells in intestinal, lung, and retinal organoids, with the highest expression in lung organoids. Collectively, this study demonstrates that the organoids can be used as an experimental platform to explore this novel virus disease mechanism and for drug development.


Assuntos
Enzima de Conversão de Angiotensina 2/análise , COVID-19 , Organoides , Análise de Sequência de RNA/métodos , Serina Endopeptidases/análise , Análise de Célula Única/métodos , Humanos , Modelos Biológicos , Receptores Virais/análise , SARS-CoV-2 , Internalização do Vírus
7.
Int J Mol Sci ; 21(21)2020 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-33138181

RESUMO

The 1918 influenza killed approximately 50 million people in a few short years, and now, the world is facing another pandemic. In December 2019, a novel coronavirus named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused an international outbreak of a respiratory illness termed coronavirus disease 2019 (COVID-19) and rapidly spread to cause the worst pandemic since 1918. Recent clinical reports highlight an atypical presentation of acute respiratory distress syndrome (ARDS) in COVID-19 patients characterized by severe hypoxemia, an imbalance of the renin-angiotensin system, an increase in thrombogenic processes, and a cytokine release storm. These processes not only exacerbate lung injury but can also promote pulmonary vascular remodeling and vasoconstriction, which are hallmarks of pulmonary hypertension (PH). PH is a complication of ARDS that has received little attention; thus, we hypothesize that PH in COVID-19-induced ARDS represents an important target for disease amelioration. The mechanisms that can promote PH following SARS-CoV-2 infection are described. In this review article, we outline emerging mechanisms of pulmonary vascular dysfunction and outline potential treatment options that have been clinically tested.


Assuntos
Lesão Pulmonar Aguda/patologia , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/patologia , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/patologia , Síndrome Respiratória Aguda Grave/patologia , Vasoconstrição/fisiologia , Betacoronavirus , COVID-19 , Síndrome da Liberação de Citocina/tratamento farmacológico , Síndrome da Liberação de Citocina/patologia , Sistema Calicreína-Cinina/fisiologia , Pandemias , Sistema Renina-Angiotensina/fisiologia , SARS-CoV-2 , Síndrome Respiratória Aguda Grave/tratamento farmacológico , Vasoconstrição/efeitos dos fármacos
8.
Biochem Biophys Res Commun ; 471(4): 423-9, 2016 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-26898797

RESUMO

Diabetic cardiomyopathy is a common complication in patients with diabetes and is associated with underlying chronic inflammation and cardiac cell death, subsequently leading to heart failure (HF). ELAV-like protein 1 (ELAVL1) plays a critical role in the progression of inflammation and HF. However the role of ELAVL-1 in inflammation induced cardiac cell death (pyroptosis) under hyperglycemic condition remains elusive. Our data demonstrates that ELAVL1 expression augmented with a concomitant increase in caspase-1 and IL-1 beta expression in human hearts and human ventricular cardiomyocytes under hyperglycemic condition. Furthermore, ELAVL1 knockdown abrogates TNF-α induced canonical pyroptosis via NLRP3, caspase-1 and IL-1beta suppression. Bioinformatics analysis and target validation assays showed that miR-9 directly targets ELAVL1. Interestingly, miRNA-9 expression significantly reduced in high glucose treated cardiomyocytes and in human diabetic hearts. Inhibition of miR-9 upregulates ELAVL1 expression and activates caspase-1. Alternatively, treatment with miR-9 mimics attenuates hyperglycemia-induced ELAVL1 and inhibits cardiomyocyte pyroptosis. Taken together our study highlights the potential therapeutic implications of targeting miR-9/ELAVL1 in preventing cardiomyocyte cell loss during HF in diabetics.


Assuntos
Proteína Semelhante a ELAV 1/genética , Hiperglicemia/genética , MicroRNAs/genética , Miócitos Cardíacos/patologia , Piroptose/genética , Animais , Linhagem Celular , Células Cultivadas , Cardiomiopatias Diabéticas/patologia , Proteína Semelhante a ELAV 1/metabolismo , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Ventrículos do Coração/patologia , Humanos , Hiperglicemia/metabolismo , Camundongos , MicroRNAs/metabolismo , Miócitos Cardíacos/fisiologia
9.
Cytokine ; 84: 1-9, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27203664

RESUMO

The molecular mechanism of curcumin in macrophage polarization remains unknown in renal failure. We examined, whether curcumin treatment is associated with the modulation of renal function and macrophage phenotype switch in daunorubicin (DNR) induced nephrotoxicity model. Sprague-Dawley rats were treated with a cumulative dose of 9mg/kg DNR (i.v). Followed by curcumin (100mg/kg) administration orally every day for 6weeks. DNR treated rats showed nephrotoxicity as evidenced by worsening renal function, which was assessed by measuring creatinine and blood urea nitrogen in serum. These changes were reversed by treatment with curcumin, which resulted in significant improvement in renal function. Furthermore, curcumin increased cluster of differentiation (CD)163 expression, and down-regulated renal expression of antigen II type I receptor (AT1R), endothelin (ET)1, ET receptor type A and B (ETAR and ETBR), CD68 and CD80. Renal protein expression of extracellular signal-regulated kinase (ERK)1/2 and nuclear factor (NF)κB p65 were increased in DNR treated rats, and treatment with curcumin attenuated these increased expression. Curcumin mediated a further increase in the levels of interleukin (IL)-10. In addition, the expression of M1 phenotype was increased in DNR treated rats, which were attenuated by curcumin. Taken together, our results demonstrated that polyphenol curcumin has an ability to improve renal function and might induce the phenotypic switching from M1 to M2 macrophage polarization in DNR induced nephrotoxicity in rats.


Assuntos
Curcumina/farmacologia , Daunorrubicina/farmacologia , Inflamação/tratamento farmacológico , Rim/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Insuficiência Renal/induzido quimicamente , Insuficiência Renal/tratamento farmacológico , Animais , Nitrogênio da Ureia Sanguínea , Creatinina/sangue , Regulação para Baixo/efeitos dos fármacos , Inflamação/metabolismo , Interleucina-10/metabolismo , Rim/metabolismo , Testes de Função Renal/métodos , Macrófagos/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley , Insuficiência Renal/sangue , Insuficiência Renal/metabolismo , Tetraspanina 30/metabolismo
10.
Alcohol Clin Exp Res ; 40(4): 686-97, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27013182

RESUMO

BACKGROUND: Eight percent of the U.S. population has been diagnosed with diabetes mellitus (DM), while another large percentage has gone undiagnosed. As the epidemiology of this disease constitutes a larger percentage of the American population, another factor presents a dangerous dilemma that can exacerbate the hazardous effects imposed by DM. Excessive alcohol consumption concerns the health of more than 50% of all adults. When this heavy-alcohol-drinking population overlaps with DM and its complications, the effects can be dangerous. In this review, we term it as "double trouble." METHODS: We provide evidence of alcohol-induced exacerbation of organ damage in diabetic conditions. In certain cases, we have explained how diabetes and alcohol induce similar pathological effects. RESULTS: Known exacerbated complications include those related to heart diseases, liver damage, kidney dysfunction, as well as retinal and neurological impairment. Often, pathophysiological damage concludes with end-stage disorders and even mortality. The metabolic, cell signaling, and pathophysiological changes associated with "double trouble" would lead to the identification of novel therapeutic targets. CONCLUSIONS: This review summarizes the epidemiology, diagnosis, pathophysiology, metabolic, and cell signaling alterations and finally brushes upon issues and strategies to manage the "double trouble."


Assuntos
Consumo de Bebidas Alcoólicas/efeitos adversos , Consumo de Bebidas Alcoólicas/epidemiologia , Complicações do Diabetes/epidemiologia , Diabetes Mellitus/epidemiologia , Consumo de Bebidas Alcoólicas/fisiopatologia , Alcoolismo/diagnóstico , Alcoolismo/epidemiologia , Alcoolismo/fisiopatologia , Complicações do Diabetes/diagnóstico , Complicações do Diabetes/fisiopatologia , Diabetes Mellitus/diagnóstico , Diabetes Mellitus/fisiopatologia , Humanos
11.
Cell Biochem Funct ; 34(5): 334-42, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27273517

RESUMO

Increase in 4-hydroxy-2-nonenal (4HNE) due to oxidative stress has been observed in a variety of cardiac diseases such as diabetic cardiomyopathy. 4HNE exerts a damaging effect in the myocardium by interfering with subcellular organelles like mitochondria by forming adducts. Therefore, we hypothesized that increased 4HNE adduct formation in the heart results in proteasome inactivation in isoproterenol (ISO)-infused type 1 diabetes mellitus (DM) rats. Eight-week-old male Sprague Dawley rats were injected with streptozotocin (STZ, 65 mg kg(-1) ). The rats were infused with ISO (5 mg kg(-1) ) for 2 weeks by mini pumps, after 8 weeks of STZ injection. We studied normal control (n = 8) and DM + ISO (n = 10) groups. Cardiac performance was assessed by echocardiography and Millar catheter at the end of the protocol at 20 weeks. Initially, we found an increase in 4HNE adducts in the hearts of the DM + ISO group. There was also a decrease in myocardial proteasomal peptidase (chymotrypsin and trypsin-like) activity. Increases in cardiomyocyte area (446 ± 32·7 vs 221 ± 10·83) (µm(2) ), per cent area of cardiac fibrosis (7·4 ± 0·7 vs 2·7 ± 0·5) and cardiac dysfunction were also found in DM + ISO (P < 0·05) relative to controls. We also found increased 4HNE adduct formation on proteasomal subunits. Furthermore, reduced aldehyde dehydrogenase 2 activity was observed in the myocardium of the DM + ISO group. Treatment with 4HNE (100 µM) for 4 h on cultured H9c2 cardiomyocytes attenuated proteasome activity. Therefore, we conclude that the 4HNE-induced decrease in proteasome activity may be involved in the cardiac pathology in STZ-injected rats infused with ISO. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Aldeídos/toxicidade , Isoproterenol/farmacologia , Miocárdio/enzimologia , Miocárdio/patologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Aldeído-Desidrogenase Mitocondrial/metabolismo , Animais , Linhagem Celular , Diabetes Mellitus Experimental/enzimologia , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Experimental/fisiopatologia , Fibrose , Testes de Função Cardíaca/efeitos dos fármacos , Hipertrofia , Masculino , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Ratos Sprague-Dawley , Estreptozocina
12.
Cytokine ; 74(2): 305-12, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25873126

RESUMO

The renin angiotensin system (RAS) is essential for the regulation of cardiovascular and renal functions to maintain the fluid and electrolyte homeostasis. Recent studies have demonstrated a locally expressed RAS in various tissues of mammals, which is having pathophysiological roles in those organ system. Interestingly, local RAS has important role during the inflammatory bowel disease pathogenesis. Further to delineate its role and also to identify the potential effects of telmisartan, an angiotensin receptor blocker, we have used a mouse model of acute colitis induced by dextran sulphate sodium. We have used 0.01 and 5mg/kg body weight doses of telmisartan and administered as enema to facilitate the on-site action and to reduce the systemic adverse effects. Telmisartan high dose treatment significantly reduced the disease activity index score when compared with the colitis control mice. In addition, oxidative stress and endoplasmic reticulum stress markers expression were also significantly reduced when compared with the colitis control mice. Subsequent experiments were carried out to investigate some of the mechanisms underlying its anti-inflammatory effects and identified that the mRNA levels of pro-inflammatory cytokines such as tumour necrosis factor α, interleukin 1ß, interleukin 6 and monocyte chemoattractant protein 1 as well as cellular DNA damage were significantly suppressed when compared with the colitis control mice. Similarly the apoptosis marker proteins such as cleaved caspase 3 and 7 levels were down-regulated and anti-apoptotic protein Bcl2 level was significantly upregulated by telmisartan treatment. These results indicate that blockade of RAS by telmisartan can be an effective therapeutic option against acute colitis.


Assuntos
Benzimidazóis/farmacologia , Benzoatos/farmacologia , Colite , Citocinas/imunologia , Sulfato de Dextrana/toxicidade , Doença Aguda , Animais , Caspase 3/imunologia , Caspase 7/imunologia , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/imunologia , Modelos Animais de Doenças , Feminino , Camundongos , Proteínas Proto-Oncogênicas c-bcl-2/imunologia , Telmisartan
13.
Exp Dermatol ; 24(10): 773-8, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26010430

RESUMO

Delayed wound healing is one of the major complications in diabetes and is characterized by chronic proinflammatory response, and abnormalities in angiogenesis and collagen deposition. Sirtuin family proteins regulate numerous pathophysiological processes, including those involved in promotion of longevity, DNA repair, glycolysis and inflammation. However, the role of sirtuin 6 (SIRT6), a NAD+-dependent nuclear deacetylase, in wound healing specifically under diabetic condition remains unclear. To analyse the role of SIRT6 in cutaneous wound healing, paired 6-mm stented wound was created in diabetic db/db mice and injected siRNA against SIRT6 in the wound margins (transfection agent alone and nonsense siRNA served as controls). Wound time to closure was assessed by digital planimetry, and wounds were harvested for histology, immunohistochemistry and Western blotting. SIRT6-siRNA-treated diabetic wound showed impaired healing, which was associated with reduced capillary density (CD31-staining vessels) when compared to control treatment. Interestingly, SIRT6 deficiency decreased vascular endothelial growth factor expression and proliferation markers in the wounds. Furthermore, SIRT6 ablation in diabetic wound promotes nuclear factor-κB (NF-κB) activation resulting in increased expression of proinflammatory markers (intercellular adhesion molecule-1, vascular cell adhesion molecule-1, tumor necrosis factor-α and interleukin-1ß) and increased oxidative stress. Collectively, our findings demonstrate that loss of SIRT6 in cutaneous wound aggravates proinflammatory response by increasing NF-κB activation, oxidative stress and decrease in angiogenesis in the diabetic mice. Based on these findings, we speculate that the activation of SIRT6 signalling might be a potential therapeutic approach for promoting wound healing in diabetics.


Assuntos
Complicações do Diabetes/fisiopatologia , Reepitelização/genética , Sirtuínas/deficiência , Sirtuínas/genética , Pele/metabolismo , Animais , Proliferação de Células/genética , Técnicas de Silenciamento de Genes , Tecido de Granulação/fisiopatologia , Molécula 1 de Adesão Intercelular/análise , Interleucina-1beta/metabolismo , Masculino , Camundongos , NF-kappa B/metabolismo , Neovascularização Fisiológica/genética , Estresse Oxidativo/genética , RNA Interferente Pequeno/genética , Transdução de Sinais/genética , Sirtuínas/metabolismo , Pele/química , Fatores de Tempo , Fator de Necrose Tumoral alfa/metabolismo , Molécula 1 de Adesão de Célula Vascular/análise
14.
Exp Dermatol ; 24(6): 418-23, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25739980

RESUMO

Quercetin, glycosylated form of flavonoid compound, has potent antioxidant and anti-inflammatory properties. In this study, we have investigated the effects of quercetin on skin lesion, high-mobility group box (HMGB)1 cascade signalling and inflammation in atopic dermatitis (AD) mouse model. AD-like lesion was induced by the application of house dust mite extract to the dorsal skin of NC/Nga transgenic mouse. After AD induction, quercetin (50 mg/kg, p.o) was administered daily for 2 weeks. We evaluated dermatitis severity, histopathological changes and changes in protein expression by Western blotting for HMGB1, receptor for advanced glycation end products (RAGE), toll-like receptor (TLR)4, nuclear factor (NF)κB, nuclear factor erythroid-2-related factor (Nrf)2, kelch-like ECH-associated protein (Keap)1, extracellular signal-regulated kinase (ERK)1/2, cyclooxygenase (COX)2, tumor necrosis factor (TNF)α, interleukin (IL)-1ß, IL-2Rα and other inflammatory markers in the skin of AD mice. In addition, serum levels of T helper (Th) cytokines (interferon (IFN)γ, IL-4) were measured by enzyme-linked immunosorbent assay. Quercetin treatment attenuated the development of AD-like skin lesions. Histological analysis showed that quercetin inhibited hyperkeratosis, parakeratosis, acanthosis, mast cells and infiltration of inflammatory cells. Furthermore, quercetin treatment downregulated cytoplasmic HMGB1, RAGE, nuclear p-NFκB, p-ERK1/2, COX2, TNFα, IL-1ß, IL-2Rα, IFNγ and IL-4 and upregulated nuclear Nrf2. Our data demonstrated that the HMGB1/RAGE/NFκB signalling might play an important role in skin inflammation, and quercetin treatment could be a promising agent for AD by modulating the HMGB1/RAGE/NFκB signalling and induction of Nrf2 protein.


Assuntos
Dermatite Atópica/tratamento farmacológico , Proteína HMGB1/genética , NF-kappa B/fisiologia , Quercetina/farmacologia , Receptor para Produtos Finais de Glicação Avançada/fisiologia , Transdução de Sinais/efeitos dos fármacos , Translocação Genética/efeitos dos fármacos , Animais , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Dermatite Atópica/etiologia , Dermatite Atópica/fisiopatologia , Dermatophagoides farinae/patogenicidade , Modelos Animais de Doenças , Feminino , Proteína HMGB1/efeitos dos fármacos , Proteína HMGB1/fisiologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/genética , Sistema de Sinalização das MAP Quinases/fisiologia , Camundongos , Camundongos Transgênicos , Fator 2 Relacionado a NF-E2/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/fisiologia , NF-kappa B/efeitos dos fármacos , NF-kappa B/genética , Quercetina/uso terapêutico , Receptor para Produtos Finais de Glicação Avançada/efeitos dos fármacos , Receptor para Produtos Finais de Glicação Avançada/genética , Índice de Gravidade de Doença , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Pele/efeitos dos fármacos , Pele/patologia , Receptor 4 Toll-Like/efeitos dos fármacos , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/fisiologia , Translocação Genética/genética , Translocação Genética/fisiologia
15.
J Clin Biochem Nutr ; 56(3): 186-94, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-26060348

RESUMO

Pruni cortex, the bark of Prunus jamasakura Siebold ex Koidzumi, has been used in the Japanese systems of medicine for many years for its anti-inflammatory, antioxidant and antitussive properties. In this study, we investigated the effect of pruni cortex on atopic dermatitis NC/Nga mouse model. Atopic dermatitis-like lesion was induced by the application of house dust mite extract to the dorsal skin. After induction of atopic dermatitis, pruni cortex aqueous extract (1 g/kg, p.o.) was administered daily for 2 weeks. We evaluated dermatitis severity, histopathological changes and cellular protein expression by Western blotting for nuclear and cytoplasmic high mobility group box 1, receptor for advanced glycation end products, nuclear factor κB, apoptosis and inflammatory markers in the skin of atopic dermatitis mice. The clinical observation confirmed that the dermatitis score was significantly lower when treated with pruni cortex than in the atopic dermatitis group. Similarly pruni cortex inhibited hypertrophy and infiltration of inflammatory cells as identified by histopathology. In addition, pruni cortex significantly inhibited the protein expression of cytoplasmic high mobility group box 1, receptor for advanced glycation end products, nuclear p-nuclear factor kappa B, apoptosis and inflammatory markers. These results indicate that pruni cortex may have therapeutic potential in the treatment of atopic dermatitis by attenuating high mobility group box 1 and inflammation possibly through the nuclear factor κB pathway.

16.
Exp Mol Pathol ; 97(1): 137-43, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24960275

RESUMO

Nephropathy is one of the complications of diabetes mellitus in human and experimental animals. There are various pathological renal remodeling processes leading to diabetic nephropathy because of the chronic hyperglycemia during diabetes mellitus. Various reports suggest the involvement of oxidative stress, inflammation and fibrosis during this progression. As antihypertensive drugs are reported to provide renoprotection in various animal models and clinical studies, we have carried out this study to identify the effect of torasemide, a loop diuretic, against streptozotocin-induced diabetic nephropathy and compare with furosemide. Here we have performed the measurement of blood and urine parameters and renal protein expression levels for measuring the disease severity in streptozotocin-induced diabetic rats treated torasemide or furosemide and compared with the vehicle treated rats. Furosemide treatment significantly increased the urinary protein excretion when compared with the normal rats. Torasemide treatment has reduced the expression of mineralocorticoid receptor and oxidative stress marker p67phox levels with improved mRNA levels of heme oxygenase-1 in the kidneys. In addition, torasemide treated diabetic rats showed significantly reduced expression of renal fibrosis related proteins when compared with the vehicle treated diabetic rats. Although furosemide treatment has produced improvement, its effects are comparably less than that of torasemide. Thus with the present results, we can suggest that torasemide treatment can improve the diabetic kidney disease in this rat model and which is superior to furosemide against renal fibrotic remodeling.


Assuntos
Nefropatias Diabéticas/tratamento farmacológico , Furosemida/farmacologia , Sulfonamidas/farmacologia , Animais , Glicemia/metabolismo , Peso Corporal/efeitos dos fármacos , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Modelos Animais de Doenças , Diuréticos/farmacologia , Ecocardiografia , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Rim/efeitos dos fármacos , Rim/patologia , Masculino , NADH NADPH Oxirredutases/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Proteinúria/diagnóstico , Ratos , Ratos Sprague-Dawley , Estreptozocina , Torasemida
17.
J Cell Mol Med ; 16(9): 2176-85, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22268705

RESUMO

Edaravone, a novel antioxidant, acts by trapping hydroxyl radicals, quenching active oxygen and so on. Its cardioprotective activity against experimental autoimmune myocarditis (EAM) was reported. Nevertheless, it remains to be determined whether edaravone protects against cardiac remodelling in dilated cardiomyopathy (DCM). The present study was undertaken to assess whether edaravone attenuates myocardial fibrosis, and examine the effect of edaravone on cardiac function in rats with DCM after EAM. Rat model of EAM was prepared by injection with porcine cardiac myosin 28 days after immunization, we administered edaravone intraperitoneally at 3 and 10 mg/kg/day to rats for 28 days. The results were compared with vehicle-treated rats with DCM. Cardiac function, by haemodynamic and echocardiographic study and histopathology were performed. Left ventricular (LV) expression of NADPH oxidase subunits (p47(phox), p67(phox), gp91(phox) and Nox4), fibrosis markers (TGF-ß(1) and OPN), endoplasmic reticulum (ER) stress markers (GRP78 and GADD 153) and apoptosis markers (cytochrome C and caspase-3) were measured by Western blotting. Edaravone-treated DCM rats showed better cardiac function compared with those of the vehicle-treated rats. In addition, LV expressions of NADPH oxidase subunits levels were significantly down-regulated in edaravone-treated rats. Furthermore, the number of collagen-III positive cells in the myocardium of edaravone-treated rats was lower compared with those of the vehicle-treated rats. Our results suggest that edaravone ameliorated the progression of DCM by modulating oxidative and ER stress-mediated myocardial apoptosis and fibrosis.


Assuntos
Antioxidantes/farmacologia , Antipirina/análogos & derivados , Cardiomiopatia Dilatada/tratamento farmacológico , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Antipirina/farmacologia , Apoptose/efeitos dos fármacos , Doenças Autoimunes/tratamento farmacológico , Doenças Autoimunes/patologia , Western Blotting , Miosinas Cardíacas , Cardiomiopatia Dilatada/patologia , Caspase 3/genética , Caspase 3/metabolismo , Citocromos c/genética , Citocromos c/metabolismo , Regulação para Baixo , Edaravone , Fibrose Endomiocárdica/tratamento farmacológico , Fibrose Endomiocárdica/patologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Ventrículos do Coração/efeitos dos fármacos , Ventrículos do Coração/metabolismo , Marcação In Situ das Extremidades Cortadas , Masculino , Miocardite/tratamento farmacológico , Miocardite/patologia , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Endogâmicos Lew , Suínos
18.
Exp Mol Pathol ; 93(2): 183-9, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22542793

RESUMO

There are various reports suggesting the role of angiotensin (Ang) receptor blockers, Ang converting enzyme inhibitors, calcium channel blockers, diuretics and antioxidants against the progression of experimental autoimmune myocarditis (EAM) to dilated cardiomyopathy (DCM). Most of them were reported to be effective during this adverse cardiac remodeling. Recently much attention has been paid to studying the involvement of AMP-activated protein kinase (AMPK) and mitogen activated protein kinase (MAPK) in various cardiovascular ailments. AMPK acts as a master sensor of cellular energy balance via maintenance of lipid and glucose metabolism. Evidences also suggest the relation between AMPK and oxidative stress during physiological and pathological myocardial cellular function. Since, it is of interest to identify the roles of AMPK and MAPK during the progression of EAM to DCM and also the effect of edaravone, a novel free radical scavenger, against its progression. For this, we have carried out western blotting, histopathological staining and immunohistochemical analyses to measure the myocardial expressions of AMPK signaling and oxidative stress related parameters in normal and vehicle or edaravone-treated EAM rats, respectively. We identified the myocardial levels of phospho Akt and phosphoinositide 3-kinase, which are the upstream proteins of AMPK and MAPK activation and both were up-regulated in the vehicle-treated rats, whereas candesartan treatment significantly reversed these changes. We have also measured the myocardial levels of p-AMPKα, different isoforms of protein kinase C and MAPK signaling proteins. All of these protein levels were significantly elevated in the hearts of DCM rats whereas edaravone treatment significantly reversed these changes. In viewing these results, we can suggest that along with MAPK, AMPK signaling also plays a crucial role in the progression of EAM and it can be effectively blocked by the treatment with a novel antioxidant, edaravone.


Assuntos
Antipirina/análogos & derivados , Doenças Autoimunes/enzimologia , Sequestradores de Radicais Livres/farmacologia , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Miocardite/enzimologia , Proteínas Quinases/metabolismo , Quinases Proteína-Quinases Ativadas por AMP , Animais , Antipirina/farmacologia , Doenças Autoimunes/patologia , Doenças Autoimunes/prevenção & controle , Modelos Animais de Doenças , Progressão da Doença , Edaravone , Coração/efeitos dos fármacos , Isoenzimas/metabolismo , Masculino , Miocardite/patologia , Miocardite/prevenção & controle , Miocárdio/metabolismo , Miocárdio/patologia , Estresse Oxidativo/efeitos dos fármacos , Fosfatidilinositol 3-Quinase/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Endogâmicos Lew , Transdução de Sinais/fisiologia
19.
Med Mol Morphol ; 45(3): 140-51, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23001296

RESUMO

Intestinal fibrosis is a common and severe complication of inflammatory bowel disease (IBD), especially Crohn's disease (CD). To investigate the therapeutic approach to intestinal fibrosis, we have developed a mouse model of intestinal fibrosis by administering dextran sulfate sodium (DSS) and examining the effects of irsogladine maleate (IM) [2,4-diamino-6-(2,5-dichlorophenyl)-s-triazine maleate], which has been widely used as an antiulcer drug for gastric mucosa in Japan, on DDS-induced chronic colitis. In this experimental colitis lesion, several pathognomonic changes were found: increased deposition of collagen, increased number of profibrogenic mesenchymal cells such as fibroblasts (vimentin(+), α-SMA(-)) and myofibroblasts (vimentin(+), α-SMA(+)) in both mucosa and submucosa of the colon with infiltrating inflammatory cells, and increased mRNA expressions of collagen type I, transforming growth factor (TGF)-ß, matrix metalloproteinase (MMP)-2, and tissue inhibitor of matrix metalloproteinase (TIMP)-1. When IM was administered intrarectally to this colitis, all these pathological changes were significantly decreased or suppressed, suggesting a potential adjunctive therapy for intestinal fibrosis. IM could consequently reduce fibrosis in DSS colitis by direct or indirect effect on profibrogenic factors or fibroblasts. Therefore, the precise effect of IM on intestinal fibrosis should be investigated further.


Assuntos
Antiulcerosos/uso terapêutico , Colite/tratamento farmacológico , Fibrose/tratamento farmacológico , Inflamação/tratamento farmacológico , Triazinas/uso terapêutico , Animais , Antiulcerosos/administração & dosagem , Doença Crônica , Colite/induzido quimicamente , Colite/metabolismo , Colite/patologia , Sulfato de Dextrana , Modelos Animais de Doenças , Feminino , Fibrose/metabolismo , Fibrose/patologia , Humanos , Inflamação/metabolismo , Inflamação/patologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Camundongos , Camundongos Endogâmicos C57BL , Resultado do Tratamento , Triazinas/administração & dosagem
20.
Front Pharmacol ; 13: 912660, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35814231

RESUMO

Endothelial cells can acquire a mesenchymal phenotype in response to external stimuli through both mechanical and biological factors, using a process known as endothelial-to-mesenchymal (EndoMT) transition. EndoMT is characterized by the decrease in endothelial characteristics, increase in mesenchymal markers, and morphological changes. It has been recognized not only during development but also in different pathological conditions including organ/tissue fibrosis in adults. The ability to modulate the EndoMT process could have a therapeutic potential in many fibrotic diseases. An in vitro method is presented here to induce EndoMT with Nω-nitro-L-arginine methyl ester hydrochloride (L-NAME) and angiotensin II (Ang II) followed by a protocol to study the reversibility of EndoMT. Using this method, we furnish evidence that the combination of L-NAME and Ang II can stimulate EndoMT in Human umbilical vascular endothelial cells (HUVECs) and this process can be reversed as observed using endothelial functionality assays. This method may serve as a model to screen and identify potential pharmacological molecules to target and regulate the EndoMT process, with applications in drug discovery for human diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA