RESUMO
BACKGROUND: Homelessness is associated with substantial morbidity. Data linkages between homeless and health systems are important to understand unique needs across homeless populations, identify homeless individuals not registered in homeless databases, quantify the impact of housing services on health-system use, and motivate health systems and payers to contribute to housing solutions. METHODS: We performed a cross-sectional survey including six health systems and two Homeless Management Information Systems (HMIS) in Cook County, Illinois. We performed privacy-preserving record linkage to identify homelessness through HMIS or ICD-10 codes captured in electronic medical records. We measured the prevalence of health conditions and health-services use across the following typologies: housing-service utilizers stratified by service provided (stable, stable plus unstable, unstable) and non-utilizers (i.e., homelessness identified through diagnosis codes-without receipt of housing services). RESULTS: Among 11,447 homeless recipients of healthcare, nearly 1 in 5 were identified by ICD10 code alone without recorded homeless services (n = 2177; 19%). Almost half received homeless services that did not include stable housing (n = 5444; 48%), followed by stable housing (n = 3017; 26%), then receipt of both stable and unstable services (n = 809; 7%). Setting stable housing recipients as the referent group, we found a stepwise increase in behavioral-health conditions from stable housing to those known as homeless solely by health systems. Compared to those in stable housing, prevalence rate ratios (PRR) for those without homeless services were as follows: depression (PRR = 2.2; 95% CI 1.9 to 2.5), anxiety (PRR = 2.5; 95% CI 2.1 to 3.0), schizophrenia (PRR = 3.3; 95% CI 2.7 to 4.0), and alcohol-use disorder (PRR = 4.4; 95% CI 3.6 to 5.3). Homeless individuals who had not received housing services relied on emergency departments for healthcare-nearly 3 of 4 visited at least one and many (24%) visited multiple. CONCLUSIONS: Differences in behavioral-health conditions and health-system use across homeless typologies highlight the particularly high burden among homeless who are disconnected from homeless services. Fragmented and high use of emergency departments for care should motivate health systems and payers to promote housing solutions, especially those that incorporate substance use and mental health treatment.
Assuntos
Pessoas Mal Alojadas , Estudos Transversais , Atenção à Saúde , Habitação , Humanos , Illinois , Armazenamento e Recuperação da InformaçãoRESUMO
The concept of healing in medicine has been taking a new form where scientists and researchers are in pursuance of regenerative medicine. Until now, doctors have "reacted" to disease by treating the symptoms; however, modern medicine is transforming toward regeneration rather than reactive treatment, which is where stem cell therapy comes into the play-the concept of replacing damaged cells with brand new cells that perform the same function better. Stem cell treatment is currently being used to treat autoimmune, inflammatory, neurological, orthopedic, and traumatic disorders, with various research being undertaken for a wide range of diseases. It could also be the answer to anti-aging and a disease-free state. Despite the benefits, numerous errors could prevail in treating patients with stem cells. With the advancement of technology and research in the modern period, medicine is beginning to turn to artificial intelligence (AI) to address the complicated errors that could occur in regenerative medicine. For successful treatment, one must achieve precision and accuracy when analyzing healthy and productive stem cells that possess all the properties of a native cell. This review intends to discuss and study the application of AI in stem cell therapy and how it influences how medicine is practiced, thus creating a path to a regenerative future with negligible adverse effects. The following databases were used for a literature search: PubMed, Google Scholar, PubMed Central, and Institute of Electrical and Electronics Engineers (IEEE) Xplore. After a thorough analysis, studies were chosen, keeping in mind the inclusion and exclusion criteria set by the authors of this review, which comprised reports published within the last six years in the English language. The authors also made sure to include studies that sufficed the quality of each report assessed using appropriate quality appraisal tools, after which eight reports were found to be eligible and were included in this review. This research mainly revolves around machine learning, deep neural networks (DNN), and other subclasses of AI encompassed in these categories. While there are concerns and limitations in implementing various mediums of AI in stem cell therapy, the analysis of the eligible studies concluded that artificial intelligence provides significant benefits to the global healthcare ecosystem in numerous ways, such as determining the viability, functionality, biosafety, and bioefficacy of stem cells, as well as appropriate patient selection. Applying AI to this novelty brings out the precision, accuracy, and a revolution in regenerative medicine. In addition, stem cell therapy is not currently FDA approved (except for the blood-forming stem cells) and, to date, is considered experimental with no clear outline of risks and benefits. Given this limitation, studies are conducted regularly around the world in hopes for a concrete conclusion where technological advances such as AI could help in shaping the future of regenerative medicine.