Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 16(41): e2003688, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32964623

RESUMO

Sodium-ion batteries (SIBs) have become increasingly important as next-generation energy storage systems for application in large-scale energy storage. It is very crucial to develop an eco-friendly and green SIB technique with superior performance for sustainable future use. Replacing the conventional inorganic electrode materials with green and safe organic electrodes will be a promising approach. However, the poor electrochemical kinetics, unstable electrode-electrolyte interface, high solubility of the electrodes in the electrolyte, and large amount of conductive carbon present great challenges for organic SIBs. In this study, the issues of organic electrodes are addressed through atomic-level manipulation of these organic molecules using a series of ultrathin (Å-level) metal oxide coatings (Al2 O3 , ZnO, and TiO2 ). Uniform and precise coatings on the perylene-3,4,9,10-tetracarboxylicacid dianhydride by gas-phase atomic layer deposition technique shows a stable interphase, enhanced electrochemical kinetics (71C, 10 A g-1 ), and excellent stability (89%-500 cycles) compared to conventional organic electrode (70%-200 cycles). Further studies reveal that the chemical stability of the metal oxide coating layer plays a critical role in influencing the redox behavior, and improving kinetics of organic electrodes. This study opens a new avenue for developing high-energy organic SIBs with performance equivalent to inorganic counterparts.

2.
Small Methods ; 6(2): e2100888, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35174991

RESUMO

Sodium-ion batteries (SIBs) hold great potential for use in large-scale grid storage applications owing to their low energy cost compared to lithium analogs. The symmetrical SIBs employing Na3 V2 (PO4 )3 (NVP) as both the cathode and anode are considered very promising due to negligible volume changes and longer cycle life. However, the structural changes associated with the electrochemical reactions of symmetrical SIBs employing NVP have not been widely studied. Previous studies on symmetrical SIBs employing NVP are believed to undergo one mole of Na+ storage during the electrochemical reaction. However, in this study, it is shown that there are significant differences during the electrochemical reaction of the symmetrical NVP system. The symmetrical sodium-ion cell undergoes ≈2 moles of Na+ reaction (intercalation and deintercalation) instead of 1 mole of Na+ . A simultaneous formation of Na5 V2 (PO4 )3 phase in the anode and NaV2 (PO4 )3 phase in the cathode is revealed by synchrotron-based X-ray diffraction and X-ray absorption spectroscopy. A symmetrical NVP cell can deliver a stable capacity of ≈99 mAh g-1 , (based on the mass of the cathode) by simultaneously utilizing V3+ /V2+ redox in anode and V3+ /V4+ redox in cathode. The current study provides new insights for the development of high-energy symmetrical NIBs for future use.

3.
Nanomaterials (Basel) ; 10(10)2020 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-33081310

RESUMO

Manganese oxide (MnO2) is a promising material for supercapacitor applications, with a theoretical ultra-high energy density of 308 Wh/kg. However, such ultra-high energy density has not been achieved experimentally in MnO2-based supercapacitors because of several practical issues, such as low electrical conductivity of MnO2, incomplete utilization of MnO2, and dissolution of MnO2. The present study investigates the potential of MnO2/reduced graphene oxide (rGO) hybrid nanoscroll (GMS) structures as electrode material for overcoming the difficulties and for developing ultra-high-energy storage systems. A hybrid supercapacitor, comprising MnO2/rGO nanoscrolls as anode material and activated carbon (AC) as a cathode, is fabricated. The GMS/AC hybrid supercapacitor exhibited enhanced energy density, superior rate performance, and promising Li storage capability that bridged the energy-density gap between conventional Li-ion batteries (LIBs) and supercapacitors. The fabricated GMS/AC hybrid supercapacitor demonstrates an ultra-high lithium discharge capacity of 2040 mAh/g. The GMS/AC cell delivered a maximum energy density of 105.3 Wh/kg and a corresponding power density of 308.1 W/kg. It also delivered an energy density of 42.77 Wh/kg at a power density as high as 30,800 W/kg. Our GMS/AC cell's energy density values are very high compared with those of other reported values of graphene-based hybrid structures. The GMS structures offer significant potential as an electrode material for energy-storage systems and can also enhance the performance of the other electrode materials for LIBs and hybrid supercapacitors.

4.
Nanomaterials (Basel) ; 10(6)2020 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-32580491

RESUMO

Lithium-sulfur batteries are attractive candidates for next generation high energy applications, but more research works are needed to overcome their current challenges, namely: (a) the poor electronic conductivity of sulfur, and (b) the dissolution and migration of long-chain polysulfides. Inspired by eco-friendly and bio-derived materials, we synthesized highly porous carbon from cinnamon sticks. The bio-carbon had an ultra-high surface area and large pore volume, which serves the dual functions of making sulfur particles highly conductive and acting as a polysulfide reservoir. Sulfur was predominantly impregnated into pores of the carbon, and the inter-connected hierarchical pore structure facilitated a faster ionic transport. The strong carbon framework maintained structural integrity upon volume expansion, and the unoccupied pores served as polysulfide trapping sites, thereby retaining the polysulfide within the cathode and preventing sulfur loss. These mechanisms contributed to the superior performance of the lithium-sulfur cell, which delivered a discharge capacity of 1020 mAh g-1 at a 0.2C rate. Furthermore, the cell exhibited improved kinetics, with an excellent cycling stability for 150 cycles with a very low capacity decay of 0.10% per cycle. This strategy of combining all types of pores (micro, meso and macro) with a high pore volume and ultra-high surface area had a synergistic effect on improving the performance of the sulfur cathode.

5.
Nanomaterials (Basel) ; 9(2)2019 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-30682829

RESUMO

Present state-of-the-art graphene-based electrodes for supercapacitors remain far from commercial requirements in terms of high energy density. The realization of high energy supercapacitor electrodes remains challenging, because graphene-based electrode materials are synthesized by the chemical modification of graphene. The modified graphene electrodes have lower electrical conductivity than ideal graphene, and limited electrochemically active surface areas due to restacking, which hinders the access of electrolyte ions, resulting in a low energy density. In order to solve the issue of restacking and low electrical conductivity, we introduce thiol-functionalized, nitrogen-doped, reduced graphene oxide scrolls as the electrode materials for an electric double-layer supercapacitor. The fabricated supercapacitor exhibits a very high energy/power density of 206 Wh/kg (59.74 Wh/L)/496 W/kg at a current density of 0.25 A/g, and a high power/energy density of 32 kW/kg (9.8 kW/L)/9.58 Wh/kg at a current density of 50 A/g; it also operates in a voltage range of 0~4 V with excellent cyclic stability of more than 20,000 cycles. By suitably combining the scroll-based electrode and electrolyte material, this study presents a strategy for electrode design for next-generation energy storage devices with high energy density without compromising the power density.

6.
ChemSusChem ; 12(20): 4645-4654, 2019 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-31419074

RESUMO

Sodium batteries have been recognized as a promising alternative to lithium-ion batteries. However, the liquid electrolyte used in these batteries has inherent safety problems. Polymer electrolytes have been considered as safer and more reliable electrolyte systems for rechargeable batteries. Herein, a thermoplastic polyurethane elastomer-based gel polymer electrolyte with high ionic conductivity and high elasticity was reported. It had an ambient-temperature ionic conductivity of 1.5 mS cm-1 and high stretchability, capable of withstanding 610 % strain. Coordination between Na+ ions and polymer chains increased the degree of salt dissociation in the gel polymer electrolyte compared with the liquid electrolyte. An Na/Na3 V2 (PO4 )3 cell assembled with gel polymer electrolyte exhibited good cycling performance in terms of discharge capacity, cycling stability, and rate capability, which was owing to the effective trapping ability of organic solvents in the polymer matrix and uniform flux of sodium ions through the gel polymer electrolyte.

7.
ACS Appl Mater Interfaces ; 9(46): 40187-40196, 2017 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-29076723

RESUMO

The abundance of sodium resources has recently motivated the investigation of sodium ion batteries (SIBs) as an alternative to commercial lithium ion batteries. However, the low power and low capacity of conventional sodium anodes hinder their practical realization. Although most research has concentrated on the development of high-capacity sodium anodes, anodes with a combination of high power and high capacity have not been widely realized. Herein, we present a simple microwave irradiation technique for obtaining few-layered, ultrathin two-dimensional SnS2 over graphene sheets in a few minutes. SnS2 possesses a large number of active surface sites and exhibits high-capacity, rapid sodium ion storage kinetics induced by quick, nondestructive pseudocapacitance. Enhanced sodium ion storage at a high current density (12 A g-1), accompanied by high reversibility and high stability, was demonstrated. Additionally, a rationally designed sodium ion full cell coupled with SnS2//Na3V2(PO4)3 exhibited exceptional performance with high initial Coulombic efficiency (99%), high capacity, high stability, and a retention of ∼53% of the initial capacity even after the current density was increased by a factor of 140. In addition, a high specific energy of ∼140 Wh kg-1 and an ultrahigh specific power of ∼8.3 kW kg-1 (based on the mass of both the anode and cathode) were observed. Because of its outstanding performance and rapid synthesis, few-layered SnS2 could be a promising candidate for practical realization of high-power SIBs.

8.
ChemSusChem ; 10(13): 2805-2815, 2017 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-28453182

RESUMO

Electrochemical supercapacitors with high energy density are promising devices due to their simple construction and long-term cycling performance. The development of a supercapacitor based on electrical double-layer charge storage with high energy density that can preserve its cyclability at higher power presents an ongoing challenge. Herein, we provide insights to achieve a high energy density at high power with an ultrahigh stability in an electrical double-layer capacitor (EDLC) system by using carbon from a biomass precursor (cinnamon sticks) in a sodium ion-based organic electrolyte. Herein, we investigated the dependence of EDLC performance on structural, textural, and functional properties of porous carbon engineered by using various activation agents. The results demonstrate that the performance of EDLCs is not only dependent on their textural properties but also on their structural features and surface functionalities, as is evident from the electrochemical studies. The electrochemical results are highly promising and revealed that the porous carbon with poor textural properties has great potential to deliver high capacitance and outstanding stability over 300 000 cycles compared with porous carbon with good textural properties. A very low capacitance degradation of around 0.066 % per 1000 cycles, along with high energy density (≈71 Wh kg-1 ) and high power density, have been achieved. These results offer a new platform for the application of low-surface-area biomass-derived carbons in the design of highly stable high-energy supercapacitors.


Assuntos
Biomassa , Carbono/química , Capacitância Elétrica , Engenharia , Adsorção , Animais , Condutividade Elétrica , Eletroquímica , Química Verde , Porosidade
9.
J Phys Chem Lett ; 8(20): 5021-5030, 2017 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-28915055

RESUMO

Despite their high specific capacity, sodium layered oxides suffer from severe capacity fading when cycled at higher voltages. This key issue must be addressed in order to develop high-performance cathodes for sodium ion batteries (SIBs). Herein, we present a comprehensive study on the influence of Al doping of Mn sites on the structural and electrochemical properties of a P2-Na0.5Mn0.5-xAlxCo0.5O2 (x = 0, 0.02, or 0.05) cathode for SIBs. Detailed structural, morphological, and electrochemical investigations were carried out using X-ray diffraction, cyclic voltammetry, and galvanostatic charge-discharge measurements, and some new insights are proposed. Rietveld refinement confirmed that Al doping caused TMO6 octahedra (TM = transition metal) shrinkage, resulting in wider interlayer spacing. After optimizing the aluminum concentration, the cathode exhibited remarkable electrochemical performance, with better stability and improved rate performance. Electrochemical impedance spectroscopy (EIS) measurements were performed at various states of charge to probe the surface and bulk effects of Al doping. The material presented here exhibits exceptional stability over 100 cycles within a 1.5-4.3 V window and outperforms several other Mn-Co-based cathodes for SIBs. This study presents a facile method for designing structurally stable cathodes for SIBs.

10.
ACS Appl Mater Interfaces ; 9(27): 22398-22407, 2017 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-28613816

RESUMO

The low volumetric energy density of reduced graphene oxide (rGO)-based electrodes limits its application in commercial electrochemical energy storage devices that require high-performance energy storage capacities in small volumes. The volumetric energy density of rGO-based electrode materials is very low due to their low packing density. A supercapacitor with enhanced packing density and high volumetric energy density is fabricated using doped rGO scrolls (GFNSs) as the electrode material. The restacking of rGO sheets is successfully controlled through synthesizing the doped scroll structures while increasing the packing density. The fabricated cell exhibits an ultrahigh volumetric energy density of 49.66 Wh/L with excellent cycling stability (>10 000 cycles). This unique design strategy for the electrode material has significant potential for the future supercapacitors with high volumetric energy densities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA