Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Int J Mol Sci ; 24(23)2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38069182

RESUMO

Ternary glassy electrolytes containing K2S as a glass modifier and P2S5 as a network former are synthesized by introducing a new type of complex and asymmetric salt, potassium triflate (KOTf), to obtain unprecedented K+ ion conductivity at ambient temperature. The glasses are synthesized using a conventional quenching technique at a low temperature. In general, alkali ionic glassy electrolytes of ternary systems, specifically for Li+ and Na+ ion conductivity, have been studied with the addition of halide salts or oxysalts such as M2SO4, M2SiO4, M3PO4 (M = Li or Na), etc. We introduce a distinct and complex salt, potassium triflate (KOTf) with asymmetric anion, to the conventional glass modifier and former to synthesize K+-ion-conducting glassy electrolytes. Two series of glassy electrolytes with a ternary system of (0.9-x)K2S-xP2S5-0.1KOTf (x = 0.15, 0.30, 0.45, 0.60, and 0.75) and z(K2S-2P2S5)-yKOTf (y = 0.05, 0.10, 0.15, 0.20, and 0.25) on a straight line of z(K2S-2P2S5) are studied for their K+ ionic conductivities by using electrochemical impedance spectroscopy (EIS). The composition 0.3K2S-0.6P2S5-0.1KOTf is found to have the highest conductivity among the studied glassy electrolytes at ambient temperature with the value of 1.06 × 10-7 S cm-1, which is the highest of all pure K+-ion-conducting glasses reported to date. Since the glass transition temperatures of the glasses are near 100 °C, as demonstrated by DSC, temperature-dependent conductivities are studied within the range of 25 to 100 °C to determine the activation energies. A Raman spectroscopic study shows the variation in the structural units PS43-, P2S74-, and P2S64- of the network former for different glassy electrolytes. It seems that there is a role of P2S74- and P2S64- in K+-ion conductivity in the glassy electrolytes because the spectroscopic results are compatible with the composition-dependent, room-temperature conductivity trend.


Assuntos
Eletrólitos , Fosfatos , Íons , Potássio , Cloreto de Sódio , Cloreto de Sódio na Dieta
2.
J Environ Manage ; 311: 114763, 2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35279492

RESUMO

Communities in and around protected areas are exposed to a higher level of human-wildlife interactions. The conservation practice with persistently adverse local livelihood outcomes can potentially aggravate such interactions leading to conflict. In our study, we examined how perceptions of HWC have formed in a protected area of the Trans-Himalayas whose conservation program collides with a centuries-long tradition of transhumance pastoralism. To examine determinants of depredation and how conflict perception has developed there, along with the socioeconomic and ecological interactions underlying those trends, we collected data using household surveys, key informant interviews, and focus group discussions. We employed Poisson-logit maximum-likelihood hurdle, binary logit, and multinomial ordered logit regressions in order to explore the determinants of annual livestock depredation, predator attacks on the shed, and household-level perceptions of HWC, respectively. Depredation and encounters with wildlife were the principal causes of perceived HWC, and depredation caused an average household-level loss of US $422.5, up to 23.28% of annual income in some households. Predators' attacks on high-quality sheds were relatively infrequent but more common in areas with perceived habitat degradation. Social customs, pastoral practices, and the present compensation mechanism were identified as being antithetical to conflict reduction and sustainable pastureland management. Further analysis revealed that a diversity of livelihoods, however, lowered conflict perception formation. The identified socio-ecological factors will continue to increase depredation, exacerbate perceived HWC, and degrade pastureland unless local conservation authorities take appropriate remedial measures.

3.
Purinergic Signal ; 16(2): 153-166, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32415576

RESUMO

Bone marrow (BM) as an active hematopoietic organ is highly sensitive to changes in body microenvironments and responds to external physical stimuli from the surrounding environment. In particular, BM tissue responds to several cues related to infections, strenuous exercise, tissue/organ damage, circadian rhythms, and physical challenges such as irradiation. These multiple stimuli affect BM cells to a large degree through a coordinated response of the innate immunity network as an important guardian for maintaining homeostasis of the body. In this review, we will foc++us on the role of purinergic signaling and innate immunity in the trafficking of hematopoietic stem/progenitor cells (HSPCs) during their egression from the BM into peripheral blood (PB), as seen along pharmacological mobilization, and in the process of homing and subsequent engraftment into BM after hematopoietic transplantation. Innate immunity mediates these processes by engaging, in addition to certain peptide-based factors, other important non-peptide mediators, including bioactive phosphosphingolipids and extracellular nucleotides, as the main topic of this review. Elucidation of these mechanisms will allow development of more efficient stem cell mobilization protocols to harvest the required number of HSPCs for transplantation and to accelerate hematopoietic reconstitution in transplanted patients.


Assuntos
Medula Óssea/metabolismo , Mobilização de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/metabolismo , Imunidade Inata/imunologia , Animais , Medula Óssea/imunologia , Movimento Celular/imunologia , Movimento Celular/fisiologia , Mobilização de Células-Tronco Hematopoéticas/métodos , Células-Tronco Hematopoéticas/imunologia , Humanos
4.
Purinergic Signal ; 16(3): 313-325, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32533388

RESUMO

An efficient harvest of hematopoietic stem/progenitor cells (HSPCs) after pharmacological mobilization from the bone marrow (BM) into peripheral blood (PB) and subsequent proper homing and engraftment of these cells are crucial for clinical outcomes from hematopoietic transplants. Since extracellular adenosine triphosphate (eATP) plays an important role in both processes as an activator of sterile inflammation in the bone marrow microenvironment, we focused on the role of Pannexin-1 channel in the secretion of ATP to trigger both egress of HSPCs out of BM into PB as well as in reverse process that is their homing to BM niches after transplantation into myeloablated recipient. We employed a specific blocking peptide against Pannexin-1 channel and noticed decreased mobilization efficiency of HSPCs as well as other types of BM-residing stem cells including mesenchymal stroma cells (MSCs), endothelial progenitors (EPCs), and very small embryonic-like stem cells (VSELs). To explain better a role of Pannexin-1, we report that eATP activated Nlrp3 inflammasome in Gr-1+ and CD11b+ cells enriched for granulocytes and monocytes. This led to release of danger-associated molecular pattern molecules (DAMPs) and mitochondrial DNA (miDNA) that activate complement cascade (ComC) required for optimal egress of HSPCs from BM. On the other hand, Pannexin-1 channel blockage in transplant recipient mice leads to a defect in homing and engraftment of HSPCs. Based on this, Pannexin-1 channel as a source of eATP plays an important role in HSPCs trafficking.


Assuntos
Trifosfato de Adenosina/metabolismo , Células da Medula Óssea/metabolismo , Conexinas/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Inflamação/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Animais , Medula Óssea/metabolismo , Inflamassomos/metabolismo , Camundongos
5.
Malar J ; 18(1): 437, 2019 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-31864353

RESUMO

BACKGROUND: The Nepalese Government has made significant progress toward the elimination of malaria. However, given the surge in the prevalence of non-communicable diseases, such as diabetes and hypertension, and the localized nature of malaria prevalence, malaria elimination will remain a challenge. In the current study, the authors sought to understand local perceptions on threats to malaria elimination in three endemic districts. METHODS: The authors conducted a capacity-building exercise embedded within a qualitative study. The study component aimed to understand how local policymakers and actors perceive challenges in malaria elimination. For them to be able to articulate the challenges, however, an understanding of malaria elimination in the context of a broader health system in Nepal would be required. The capacity-building component, thus, involved providing that knowledge. RESULTS: Although the prevalence of malaria is high in the three districts where the study was conducted, there are significant gaps in human resources, diagnosis and treatment, and the provision of indoor residual spraying and long-lasting insecticide treated nets. More importantly, the authors' experience suggests that it may be possible to capitalize on local expertise in order to identify gaps in malaria elimination at a sub-national level by building in a capacity-building exercise within a study. CONCLUSIONS: Locals in three malaria-endemic districts of Nepal perceive that there are significant gaps in human resources, diagnosis and treatment, the provision of insecticide treated nets, and indoor residual spraying.


Assuntos
Fortalecimento Institucional/estatística & dados numéricos , Erradicação de Doenças/estatística & dados numéricos , Conhecimentos, Atitudes e Prática em Saúde , Malária/prevenção & controle , Humanos , Nepal , Pesquisa Qualitativa
6.
Mol Ther ; 26(11): 2617-2630, 2018 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-30274788

RESUMO

Myotonic dystrophy type 1 (DM1) is caused by a CTG nucleotide repeat expansion within the 3' UTR of the Dystrophia Myotonica protein kinase gene. In this study, we explored therapeutic genome editing using CRISPR/Cas9 via targeted deletion of expanded CTG repeats and targeted insertion of polyadenylation signals in the 3' UTR upstream of the CTG repeats to eliminate toxic RNA CUG repeats. We found paired SpCas9 or SaCas9 guide RNA induced deletion of expanded CTG repeats. However, this approach incurred frequent inversion in both the mutant and normal alleles. In contrast, the insertion of polyadenylation signals in the 3' UTR upstream of the CTG repeats eliminated toxic RNA CUG repeats, which led to phenotype reversal in differentiated neural stem cells, forebrain neurons, cardiomyocytes, and skeletal muscle myofibers. We concluded that targeted insertion of polyadenylation signals in the 3' UTR is a viable approach to develop therapeutic genome editing for DM1.


Assuntos
Distrofia Miotônica/genética , Miotonina Proteína Quinase/genética , Células-Tronco Neurais/fisiologia , Expansão das Repetições de Trinucleotídeos/genética , Regiões 3' não Traduzidas , Sistemas CRISPR-Cas/genética , Diferenciação Celular/genética , Edição de Genes/métodos , Terapia Genética/métodos , Células HEK293 , Humanos , Músculo Esquelético/crescimento & desenvolvimento , Miócitos Cardíacos/fisiologia , Distrofia Miotônica/patologia , Distrofia Miotônica/terapia , Neurônios/fisiologia , Sinais de Poliadenilação na Ponta 3' do RNA/genética , RNA Guia de Cinetoplastídeos , Transfecção
7.
Neurol Sci ; 40(6): 1255-1265, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30891637

RESUMO

Myotonic dystrophy type 1 (DM1) is caused by CTG nucleotide repeat expansions in the 3'-untranslated region (3'-UTR) of the dystrophia myotonica protein kinase (DMPK) gene. The expanded CTG repeats encode toxic CUG RNAs that cause disease, largely through RNA gain-of-function. DM1 is a fatal disease characterized by progressive muscle wasting, which has no cure. Regenerative medicine has emerged as a promising therapeutic modality for DM1, especially with the advancement of induced pluripotent stem (iPS) cell technology and therapeutic genome editing. However, there is an unmet need to identify in vitro outcome measures to demonstrate the therapeutic effects prior to in vivo clinical trials. In this study, we examined the muscle regeneration (myotube formation) in normal and DM1 myoblasts in vitro to establish outcome measures for therapeutic monitoring. We found normal proliferation of DM1 myoblasts, but abnormal nuclear aggregation during the early stage myotube formation, as well as myotube degeneration during the late stage of myotube formation. We concluded that early abnormal nuclear aggregation and late myotube degeneration offer easy and sensitive outcome measures to monitor therapeutic effects in vitro.


Assuntos
Núcleo Celular/patologia , Núcleo Celular/fisiologia , Fibras Musculares Esqueléticas/patologia , Fibras Musculares Esqueléticas/fisiologia , Distrofia Miotônica/patologia , Distrofia Miotônica/fisiopatologia , Regeneração , Proliferação de Células , Células Cultivadas , Humanos , Técnicas In Vitro , Mioblastos/fisiologia
9.
J Biol Chem ; 291(16): 8721-34, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26893377

RESUMO

Cone photoreceptor cyclic nucleotide-gated (CNG) channels play a pivotal role in cone phototransduction, which is a process essential for daylight vision, color vision, and visual acuity. Mutations in the cone channel subunits CNGA3 and CNGB3 are associated with human cone diseases, including achromatopsia, cone dystrophies, and early onset macular degeneration. Mutations in CNGB3 alone account for 50% of reported cases of achromatopsia. This work investigated the role of CNGB3 in cone light response and cone channel structural stability. As cones comprise only 2-3% of the total photoreceptor population in the wild-type mouse retina, we used Cngb3(-/-)/Nrl(-/-) mice with CNGB3 deficiency on a cone-dominant background in our study. We found that, in the absence of CNGB3, CNGA3 was able to travel to the outer segments, co-localize with cone opsin, and form tetrameric complexes. Electroretinogram analyses revealed reduced cone light response amplitude/sensitivity and slower response recovery in Cngb3(-/-)/Nrl(-/-) mice compared with Nrl(-/-) mice. Absence of CNGB3 expression altered the adaptation capacity of cones and severely compromised function in bright light. Biochemical analysis demonstrated that CNGA3 channels lacking CNGB3 were more resilient to proteolysis than CNGA3/CNGB3 channels, suggesting a hindered structural flexibility. Thus, CNGB3 regulates cone light response kinetics and the channel structural flexibility. This work advances our understanding of the biochemical and functional role of CNGB3 in cone photoreceptors.


Assuntos
Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Luz , Células Fotorreceptoras Retinianas Cones/metabolismo , Animais , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Humanos , Camundongos , Camundongos Knockout , Opsinas/genética , Opsinas/metabolismo , Células Fotorreceptoras Retinianas Cones/citologia
10.
Proc Natl Acad Sci U S A ; 111(9): 3602-7, 2014 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-24550448

RESUMO

Cone phototransduction and survival of cones in the human macula is essential for color vision and for visual acuity. Progressive cone degeneration in age-related macular degeneration, Stargardt disease, and recessive cone dystrophies is a major cause of blindness. Thyroid hormone (TH) signaling, which regulates cell proliferation, differentiation, and apoptosis, plays a central role in cone opsin expression and patterning in the retina. Here, we investigated whether TH signaling affects cone viability in inherited retinal degeneration mouse models. Retinol isomerase RPE65-deficient mice [a model of Leber congenital amaurosis (LCA) with rapid cone loss] and cone photoreceptor function loss type 1 mice (severe recessive achromatopsia) were used to determine whether suppressing TH signaling with antithyroid treatment reduces cone death. Further, cone cyclic nucleotide-gated channel B subunit-deficient mice (moderate achromatopsia) and guanylate cyclase 2e-deficient mice (LCA with slower cone loss) were used to determine whether triiodothyronine (T3) treatment (stimulating TH signaling) causes deterioration of cones. We found that cone density in retinol isomerase RPE65-deficient and cone photoreceptor function loss type 1 mice increased about sixfold following antithyroid treatment. Cone density in cone cyclic nucleotide-gated channel B subunit-deficient and guanylate cyclase 2e-deficient mice decreased about 40% following T3 treatment. The effect of TH signaling on cone viability appears to be independent of its regulation on cone opsin expression. This work demonstrates that suppressing TH signaling in retina dystrophy mouse models is protective of cones, providing insights into cone preservation and therapeutic interventions.


Assuntos
Defeitos da Visão Cromática/complicações , Amaurose Congênita de Leber/complicações , Células Fotorreceptoras Retinianas Cones/fisiologia , Degeneração Retiniana/prevenção & controle , Transdução de Sinais/fisiologia , Hormônios Tireóideos/metabolismo , Animais , Antitireóideos/farmacologia , Defeitos da Visão Cromática/tratamento farmacológico , Opsinas dos Cones/metabolismo , Canais de Cátion Regulados por Nucleotídeos Cíclicos/deficiência , Guanilato Ciclase/deficiência , Amaurose Congênita de Leber/tratamento farmacológico , Metimazol , Camundongos , Camundongos Knockout , Receptores de Superfície Celular/deficiência , Células Fotorreceptoras Retinianas Cones/efeitos dos fármacos , Células Fotorreceptoras Retinianas Cones/metabolismo , Degeneração Retiniana/etiologia , Degeneração Retiniana/fisiopatologia , Tri-Iodotironina/farmacologia , cis-trans-Isomerases/deficiência
11.
Int J Mol Sci ; 18(7)2017 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-28753984

RESUMO

Cells generate unpaired electrons, typically via oxygen- or nitrogen-based by-products during normal cellular respiration and under stressed situations. These pro-oxidant molecules are highly unstable and may oxidize surrounding cellular macromolecules. Under normal conditions, the reactive oxygen or nitrogen species can be beneficial to cell survival and function by destroying and degrading pathogens or antigens. However, excessive generation and accumulation of the reactive pro-oxidant species over time can damage proteins, lipids, carbohydrates, and nucleic acids. Over time, this oxidative stress can contribute to a range of aging-related degenerative diseases such as cancer, diabetes, macular degeneration, and Alzheimer's, and Parkinson's diseases. It is well accepted that natural compounds, including vitamins A, C, and E, ß-carotene, and minerals found in fruits and vegetables are powerful anti-oxidants that offer health benefits against several different oxidative stress induced degenerative diseases, including Alzheimer's disease (AD). There is increasing interest in developing anti-oxidative therapeutics to prevent AD. There are contradictory and inconsistent reports on the possible benefits of anti-oxidative supplements; however, fruits and vegetables enriched with multiple anti-oxidants (e.g., flavonoids and polyphenols) and minerals may be highly effective in attenuating the harmful effects of oxidative stress. As the physiological activation of either protective or destructive pro-oxidant behavior remains relatively unclear, it is not straightforward to relate the efficacy of dietary anti-oxidants in disease prevention. Here, we review oxidative stress mediated toxicity associated with AD and highlight the modulatory roles of natural dietary anti-oxidants in preventing AD.


Assuntos
Doença de Alzheimer/prevenção & controle , Antioxidantes/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Doença de Alzheimer/metabolismo , Antioxidantes/administração & dosagem , Suplementos Nutricionais , Flavonoides/administração & dosagem , Flavonoides/farmacologia , Humanos , Minerais/administração & dosagem , Minerais/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Polifenóis/administração & dosagem , Polifenóis/farmacologia
12.
J Biol Chem ; 290(34): 20880-20892, 2015 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-26124274

RESUMO

Photoreceptor cyclic nucleotide-gated (CNG) channels play a pivotal role in phototransduction. Mutations in the cone CNG channel subunits CNGA3 and CNGB3 are associated with achromatopsia and cone dystrophies. We have shown endoplasmic reticulum (ER) stress-associated apoptotic cone death and increased phosphorylation of the ER Ca(2+) channel inositol 1,4,5-trisphosphate receptor 1 (IP3R1) in CNG channel-deficient mice. We also presented a remarkable elevation of cGMP and an increased activity of the cGMP-dependent protein kinase (protein kinase G, PKG) in CNG channel deficiency. This work investigated whether cGMP/PKG signaling regulates ER stress and IP3R1 phosphorylation in CNG channel-deficient cones. Treatment with PKG inhibitor and deletion of guanylate cyclase-1 (GC1), the enzyme producing cGMP in cones, were used to suppress cGMP/PKG signaling in cone-dominant Cnga3(-/-)/Nrl(-/-) mice. We found that treatment with PKG inhibitor or deletion of GC1 effectively reduced apoptotic cone death, increased expression levels of cone proteins, and decreased activation of Müller glial cells. Furthermore, we observed significantly increased phosphorylation of IP3R1 and reduced ER stress. Our findings demonstrate a role of cGMP/PKG signaling in ER stress and ER Ca(2+) channel regulation and provide insights into the mechanism of cone degeneration in CNG channel deficiency.


Assuntos
Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Estresse do Retículo Endoplasmático/genética , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Células Fotorreceptoras Retinianas Cones/metabolismo , Animais , Apoptose , Fatores de Transcrição de Zíper de Leucina Básica/deficiência , Fatores de Transcrição de Zíper de Leucina Básica/genética , Carbazóis/farmacologia , GMP Cíclico/análogos & derivados , GMP Cíclico/farmacologia , Proteínas Quinases Dependentes de GMP Cíclico/antagonistas & inibidores , Proteínas Quinases Dependentes de GMP Cíclico/genética , Canais de Cátion Regulados por Nucleotídeos Cíclicos/deficiência , Células Ependimogliais/citologia , Células Ependimogliais/metabolismo , Proteínas do Olho/genética , Regulação da Expressão Gênica , Guanilato Ciclase/deficiência , Guanilato Ciclase/genética , Receptores de Inositol 1,4,5-Trifosfato/genética , Camundongos , Camundongos Knockout , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Receptores de Superfície Celular/deficiência , Receptores de Superfície Celular/genética , Células Fotorreceptoras Retinianas Cones/citologia , Transdução de Sinais , Tionucleotídeos/farmacologia
13.
Hum Mol Genet ; 22(19): 3906-19, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23740940

RESUMO

The cone photoreceptor cyclic nucleotide-gated (CNG) channel is essential for central and color vision and visual acuity. Mutations in the channel subunits CNGA3 and CNGB3 are associated with achromatopsia and cone dystrophy. We investigated the gene expression profiles in mouse retina with CNG channel deficiency using whole genome expression microarrays. As cones comprise only 2 to 3% of the total photoreceptor population in the wild-type mouse retina, the mouse lines with CNG channel deficiency on a cone-dominant background, i.e. Cnga3-/-/Nrl-/- and Cngb3-/-/Nrl-/- mice, were used in our study. Comparative data analysis revealed a total of 105 genes altered in Cnga3-/-/Nrl-/- and 92 in Cngb3-/-/Nrl-/- retinas, relative to Nrl-/- retinas, with 27 genes changed in both genotypes. The differentially expressed genes primarily encode proteins associated with cell signaling, cellular function maintenance and gene expression. Ingenuity pathway analysis (IPA) identified 26 and 9 canonical pathways in Cnga3-/-/Nrl-/- and Cngb3-/-/Nrl-/- retinas, respectively, with 6 pathways being shared. The shared pathways include phototransduction, cAMP/PKA-mediated signaling, endothelin signaling, and EIF2/endoplasmic reticulum (ER) stress, whereas the IL-1, CREB, and purine metabolism signaling were found to specifically associate with Cnga3 deficiency. Thus, CNG channel deficiency differentially regulates genes that affect cell processes such as phototransduction, cellular survival and gene expression, and such regulations play a crucial role(s) in the retinal adaptation to impaired cone phototransduction. Though lack of Cnga3 and Cngb3 shares many common pathways, deficiency of Cnga3 causes more significant alterations in gene expression. This work provides insights into how cones respond to impaired phototransduction at the gene expression levels.


Assuntos
Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Retina/metabolismo , Células Fotorreceptoras Retinianas Cones/metabolismo , Visão Ocular/genética , Animais , Canais de Cátion Regulados por Nucleotídeos Cíclicos/deficiência , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Transdução de Sinal Luminoso , Camundongos , Camundongos Endogâmicos C57BL , Análise em Microsséries , Opsinas/genética , Opsinas/metabolismo , Receptores de Dopamina D4/genética , Receptores de Dopamina D4/metabolismo , Transdução de Sinais
14.
Adv Exp Med Biol ; 863: 55-77, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26092626

RESUMO

Flavonoids are naturally occurring phytochemicals found in a variety of fruits and vegetables and offer color, flavor, aroma, nutritional and health benefits. Flavonoids have been found to play a neuroprotective role by inhibiting and/or modifying the self-assembly of the amyloid-ß (Aß) peptide into oligomers and fibrils, which are linked to the pathogenesis of Alzheimer's disease. The neuroprotective efficacy of flavonoids has been found to strongly depend on their structure and functional groups. Flavonoids may exist in monomeric, as well as di-, tri-, tetra- or polymeric form through C-C or C-O-C linkages. It has been shown that flavonoids containing two or more units, e.g., biflavonoids, exert greater biological activity than their respective monoflavonoids. For instance, biflavonoids have the ability to distinctly alter Aß aggregation and more effectively reduce the toxicity of Aß oligomers compared to the monoflavonoid moieties. Although the molecular mechanisms remain to be elucidated, flavonoids have been shown to alter the Aß aggregation pathway to yield non-toxic, unstructured Aß aggregates, as well as directly exerting a neuroprotective effect to cells. In this chapter, we review biflavonoid-mediated Aß aggregation and toxicity, and highlight the beneficial roles biflavonoids can potentially play in the prevention and treatment of Alzheimer's disease.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides/metabolismo , Biflavonoides/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Agregação Patológica de Proteínas , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Humanos , Agregação Patológica de Proteínas/tratamento farmacológico , Agregação Patológica de Proteínas/metabolismo , Agregação Patológica de Proteínas/patologia , Relação Estrutura-Atividade
15.
J Neurosci ; 33(37): 14939-48, 2013 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-24027293

RESUMO

Photoreceptor cyclic nucleotide-gated (CNG) channels regulate Ca(2+) influx in rod and cone photoreceptors. cGMP, the native ligand of the photoreceptor CNG channels, has been associated with cytotoxicity when its levels rise above normal due to defects in photoreceptor phosphodiesterase (PDE6) or regulation of retinal guanylyl cyclase (retGC). We found a massive accumulation of cGMP in CNGA3-deficient retina and investigated whether cGMP accumulation plays a role in cone degeneration in CNG channel deficiency. The time course study showed that the retinal cGMP level in Cnga3(-/-);Nrl(-/-) mice with CNGA3 deficiency on a cone-dominant background was sharply increased at postnatal day 8 (P8), peaked around P10-P15, remained high through P30-P60, and returned to near control level at P90. This elevation pattern correlated with photoreceptor apoptotic death, which peaked around P15-P20. In Cnga3(-/-);Gucy2e(-/-) mice lacking retGC1, cone density and expression levels of cone-specific proteins were significantly increased compared with Cnga3(-/-), consistent with a role of cGMP accumulation as the major contributor to cone death caused by CNG channel deficiency. The activity and expression levels of cGMP-dependent protein kinase G (PKG) were significantly increased in Cnga3(-/-);Nrl(-/-) retina compared with Nrl(-/-), suggesting an involvement of PKG regulation in cell death. Our results indicate that cGMP accumulation in photoreceptors can itself exert cytotoxic effect in cones, independently of CNG channel activity and Ca(2+) influx.


Assuntos
GMP Cíclico/metabolismo , Canais de Cátion Regulados por Nucleotídeos Cíclicos/deficiência , Células Fotorreceptoras/metabolismo , Degeneração Retiniana/genética , Degeneração Retiniana/metabolismo , Animais , Animais Recém-Nascidos , Proteínas de Transporte , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Ensaio de Imunoadsorção Enzimática , Proteínas do Olho/metabolismo , Guanilato Ciclase/deficiência , Guanilato Ciclase/metabolismo , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/deficiência , Diester Fosfórico Hidrolases/metabolismo , Receptores de Superfície Celular/deficiência , Receptores de Superfície Celular/metabolismo , Receptores de N-Metil-D-Aspartato , Retina/patologia
16.
Stem Cell Rev Rep ; 20(1): 237-246, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37812364

RESUMO

Hematopoietic stem progenitor cells (HSPCs) follow the diurnal circulation rhythm in peripheral blood (PB) with nadir during late night and peak at early morning hours. The level of these cells in PB correlates with activation of innate immunity pathways, including complement cascade (ComC) that drives activation of Nlrp3 inflammasome. To support this, mice both in defective ComC activation as well as Nlrp3 inflammasome do not show typical changes in the diurnal level of circulating HSPCs. Migration of HSPCs is also impaired at the intracellular level by the anti-inflammatory enzyme heme oxygenase-1 (HO-1) which is an inhibitor of Nlrp3 inflammasome. It is also well known that circadian rhythm mediates PB level of melatonin released from the pineal gland. Since trafficking of HSPCs is driven by innate immunity-induced sterile inflammation and melatonin has an anti-inflammatory effect, we hypothesized that melatonin could negatively impact the release of HSPCs from BM into PB by inhibiting Nlrp3 inflammasome activation. We provide an evidence that melatonin being a ''sleep regulating pineal hormone'' directly inhibits migration of HSPCs both in vitro migration assays and in vivo during pharmacological mobilization. This correlated with inhibition of cholesterol synthesis required for a proper membrane lipid raft (MLRs) formation and an increase in expression of HO-1-an inhibitor of Nlrp3 inflammasome. Since melatonin is a commonly used drug, this should be considered while preparing a patient for the procedure of HSPCs mobilization. More importantly, our studies shed more mechanistic light on a role of melatonin in the diurnal circulation of HSPCs.


Assuntos
Melatonina , Glândula Pineal , Humanos , Animais , Camundongos , Inflamassomos/metabolismo , Melatonina/farmacologia , Melatonina/metabolismo , Glândula Pineal/metabolismo , Heme Oxigenase-1/metabolismo , Células-Tronco Hematopoéticas , Anti-Inflamatórios , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo
17.
J Biol Chem ; 287(22): 18018-29, 2012 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-22493484

RESUMO

Cyclic nucleotide-gated (CNG) channels play a pivotal role in phototransduction. Mutations in the cone CNG channel subunits CNGA3 and CNGB3 account for >70% of all known cases of achromatopsia. Cones degenerate in achromatopsia patients and in CNGA3(-/-) and CNGB3(-/-) mice. This work investigates the molecular basis of cone degeneration in CNG channel deficiency. As cones comprise only 2-3% of the total photoreceptor population in the wild-type mouse retina, we generated mouse lines with CNG channel deficiency on a cone-dominant background, i.e. CNGA3(-/-)/Nrl(-/-) and CNGB3(-/-)/Nrl(-/-) mice. The retinal phenotype and potential cell death pathways were examined by functional, biochemical, and immunohistochemical approaches. CNGA3(-/-)/Nrl(-/-) and CNGB3(-/-)/Nrl(-/-) mice showed impaired cone function, opsin mislocalization, and cone degeneration similar to that in the single knock-out mice. The endoplasmic reticulum stress marker proteins, including Grp78/Bip, phospho-eIF2α, phospho-IP(3)R, and CCAAT/enhancer-binding protein homologous protein, were elevated significantly in CNGA3(-/-)/Nrl(-/-) and CNGB3(-/-)/Nrl(-/-) retinas, compared with the age-matched (postnatal 30 days) Nrl(-/-) controls. Along with these, up-regulation of the cysteine protease calpains and cleavage of caspase-12 and caspase-7 were found in the channel-deficient retinas, suggesting an endoplasmic reticulum stress-associated apoptosis. In addition, we observed a nuclear translocation of apoptosis-inducing factor (AIF) and endonuclease G in CNGA3(-/-)/Nrl(-/-) and CNGB3(-/-)/Nrl(-/-) retinas, implying a mitochondrial insult in the endoplasmic reticulum stress-activated cell death process. Taken together, our findings suggest a crucial role of endoplasmic reticulum stress in cone degeneration associated with CNG channel deficiency.


Assuntos
Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Retículo Endoplasmático/metabolismo , Ativação do Canal Iônico , Células Fotorreceptoras Retinianas Cones/metabolismo , Animais , Morte Celular , Chaperona BiP do Retículo Endoplasmático , Marcação In Situ das Extremidades Cortadas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Confocal
18.
Biopolymers ; 99(1): 55-62, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23097230

RESUMO

Elastin-like polypeptide (ELP) fusions have been designed to allow large-scale, nonchromatographic purification of many soluble proteins by using the inverse transition cycling (ITC) method; however, the sensitivity of the aqueous lower critical solubility phase transition temperature (T(t)) of ELPs to the addition of cosolutes, including detergents, may be a potential hindrance in purification of proteins with surface hydrophobicity in such a manner. To identify detergents that are known to solubilize such proteins (e.g., membrane proteins) and that have little effect on the T(t) of the ELP, we screened a number of detergents with respect to their effects on the T(t) and secondary structures of a model ELP (denoted here as ELP180). We found that mild detergents (e.g., n-dodecyl-ß-D-maltoside, Triton-X100, and 3-[(3-cholamidopropyl) dimethylamino]-1-propanesulfonate) do not alter the phase transition behavior or structure (as probed by circular dichroism) of ELP180. This result is in contrast to previous studies that showed a strong effect of other detergents (e.g., sodium dodecylsulfate) on the T(t) of ELPs. Our results clearly indicate that mild detergents do not preclude ITC-based separation of ELPs, and thus that ELP fusions may prove to be useful in the purification of detergent-solubilized recombinant hydrophobic proteins, including membrane proteins, which are otherwise notoriously difficult to extract and purify by conventional separation methods (e.g., chromatography).


Assuntos
Detergentes/química , Elastina/química , Peptídeos/química , Dicroísmo Circular , Modelos Biológicos , Estrutura Secundária de Proteína , Solubilidade , Temperatura
19.
Langmuir ; 29(37): 11713-23, 2013 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-24004419

RESUMO

Amyloid-ß peptide (Aß)-membrane interactions have been implicated in the formation of toxic oligomers that permeabilize membranes, allowing an influx of calcium ions and triggering cell death in the pathogenesis of Alzheimer's disease (AD). Curcumin, a small dietary polyphenolic molecule, has been shown to reduce Aß-induced toxicity and AD pathology. We investigate here the effect of curcumin on Aß40-induced toxicity in cultured human neuroblastoma SH-SY5Y cells and test a novel neuroprotection mechanism in which curcumin reduces Aß-membrane interactions and attenuates Aß-induced membrane disruptions. Predominantly monomeric Aß40 exerts toxicity toward SH-SY5Y cells and has been shown to insert spontaneously into anionic lipid monolayers at the air/water interface, resulting in the misfolding and assembly of Aß into ß-sheet-enriched oligomers. Concomitantly, membrane morphology and lipid packing are disrupted. Curcumin dose-dependently ameliorates Aß-induced neurotoxicity and reduces either the rate or extent of Aß insertion into anionic lipid monolayers. Moreover, curcumin reduces Aß-induced dye leakage from lipid-bilayer-covered, dye-loaded, porous silica microspheres. Because curcumin neither affects the inherent surface activity of Aß nor modifies the membrane properties, it reduces Aß insertion by directly attenuating Aß-membrane interactions and reducing Aß-induced membrane disruption. Although the exact molecular mechanism of curcumin's membrane protective effect remains unclear, this effect could in part contribute to curcumin's neuroprotective effect with respect to Aß-induced toxicity. Our work reveals a novel molecular mechanism by which curcumin reduces Aß-related pathology and toxicity and suggests a therapeutic strategy for preventing or treating AD by targeting the inhibition of Aß-induced membrane disruption.


Assuntos
Peptídeos beta-Amiloides/antagonistas & inibidores , Membrana Celular/efeitos dos fármacos , Curcumina/farmacologia , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Peptídeos beta-Amiloides/farmacologia , Curcumina/química , Relação Dose-Resposta a Droga , Humanos , Modelos Moleculares , Estrutura Molecular , Neurônios/patologia , Fármacos Neuroprotetores/química , Relação Estrutura-Atividade , Células Tumorais Cultivadas
20.
J Phys Chem A ; 117(50): 13513-23, 2013 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-24131239

RESUMO

Understanding electron-transfer (ET) processes in dye-sensitized solar cells (DSSCs) is crucial to improving their device performance. Recently, covalent attachment of dye molecules to mesoporous semiconductor nanoparticle films via molecular linkers has been employed to increase the stability of DSSC photoanodes. The power conversion efficiency (PCE) of these DSSCs, however, is lower than DSSCs with conventional unmodified photoanodes in this study. Ultrafast transient absorption pump-probe spectroscopy (TAPPS) has been used to study the electron injection process from N719 dye molecules to TiO2 nanoparticles (NPs) in DSSC photoanodes with and without the presence of two silane-based linker molecules: 3-aminopropyltriethoxysilane (APTES) and p-aminophenyltrimethoxysilane (APhS). Ultrafast biphasic electron injection kinetics were observed in all three photoanodes using a 530 nm pump wavelength and 860 nm probe wavelength. Both the slow and fast decay components, attributed to electron injection from singlet and triplet excited states, respectively, of the N719 dye to the TiO2 conduction band, are hindered by the molecular linkers. The hindering effect is less significant with the APhS linker than the APTES linker and is more significant for the singlet-state channel than the triplet-state one. Electron injection from the vibrationally excited states is less affected by the linkers. The spectroscopic results are interpreted on the basis of the standard ET theory and can be used to guide selection of molecular linkers for DSSCs with better device performance. Other factors that affect the efficiency and stability of the DSSCs are also discussed. The relatively lower PCE of the covalently attached photoanodes is attributed to the multilayer and aggregation of the dye molecules as well as the linkers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA