Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Cell ; 187(5): 1223-1237.e16, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38428396

RESUMO

While CD4+ T cell depletion is key to disease progression in people living with HIV and SIV-infected macaques, the mechanisms underlying this depletion remain incompletely understood, with most cell death involving uninfected cells. In contrast, SIV infection of "natural" hosts such as sooty mangabeys does not cause CD4+ depletion and AIDS despite high-level viremia. Here, we report that the CARD8 inflammasome is activated immediately after HIV entry by the viral protease encapsulated in incoming virions. Sensing of HIV protease activity by CARD8 leads to rapid pyroptosis of quiescent cells without productive infection, while T cell activation abolishes CARD8 function and increases permissiveness to infection. In humanized mice reconstituted with CARD8-deficient cells, CD4+ depletion is delayed despite high viremia. Finally, we discovered loss-of-function mutations in CARD8 from "natural hosts," which may explain the peculiarly non-pathogenic nature of these infections. Our study suggests that CARD8 drives CD4+ T cell depletion during pathogenic HIV/SIV infections.


Assuntos
Infecções por HIV , Inflamassomos , Síndrome de Imunodeficiência Adquirida dos Símios , Animais , Humanos , Camundongos , Proteínas Adaptadoras de Sinalização CARD/genética , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Progressão da Doença , Infecções por HIV/patologia , Inflamassomos/metabolismo , Proteínas de Neoplasias/metabolismo , Síndrome de Imunodeficiência Adquirida dos Símios/patologia , Vírus da Imunodeficiência Símia/fisiologia , Viremia , HIV/fisiologia
2.
Cell ; 186(21): 4632-4651.e23, 2023 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-37776858

RESUMO

The dynamics of immunity to infection in infants remain obscure. Here, we used a multi-omics approach to perform a longitudinal analysis of immunity to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in infants and young children by analyzing blood samples and weekly nasal swabs collected before, during, and after infection with Omicron and non-Omicron variants. Infection stimulated robust antibody titers that, unlike in adults, showed no sign of decay for up to 300 days. Infants mounted a robust mucosal immune response characterized by inflammatory cytokines, interferon (IFN) α, and T helper (Th) 17 and neutrophil markers (interleukin [IL]-17, IL-8, and CXCL1). The immune response in blood was characterized by upregulation of activation markers on innate cells, no inflammatory cytokines, but several chemokines and IFNα. The latter correlated with viral load and expression of interferon-stimulated genes (ISGs) in myeloid cells measured by single-cell multi-omics. Together, these data provide a snapshot of immunity to infection during the initial weeks and months of life.


Assuntos
COVID-19 , SARS-CoV-2 , Adulto , Criança , Lactente , Humanos , Pré-Escolar , SARS-CoV-2/metabolismo , Multiômica , Citocinas/metabolismo , Interferon-alfa , Imunidade nas Mucosas
3.
Nat Immunol ; 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886592

RESUMO

Human immunodeficiency virus (HIV) cure efforts are increasingly focused on harnessing CD8+ T cell functions, which requires a deeper understanding of CD8+ T cells promoting HIV control. Here we identifiy an antigen-responsive TOXhiTCF1+CD39+CD8+ T cell population with high expression of inhibitory receptors and low expression of canonical cytolytic molecules. Transcriptional analysis of simian immunodeficiency virus (SIV)-specific CD8+ T cells and proteomic analysis of purified CD8+ T cell subsets identified TOXhiTCF1+CD39+CD8+ T cells as intermediate effectors that retained stem-like features with a lineage relationship with terminal effector T cells. TOXhiTCF1+CD39+CD8+ T cells were found at higher frequency than TCF1-CD39+CD8+ T cells in follicular microenvironments and were preferentially located in proximity of SIV-RNA+ cells. Their frequency was associated with reduced plasma viremia and lower SIV reservoir size. Highly similar TOXhiTCF1+CD39+CD8+ T cells were detected in lymph nodes from antiretroviral therapy-naive and antiretroviral therapy-suppressed people living with HIV, suggesting this population of CD8+ T cells contributes to limiting SIV and HIV persistence.

4.
Cell ; 184(2): 460-475.e21, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33278358

RESUMO

SARS-CoV-2-induced hypercytokinemia and inflammation are critically associated with COVID-19 severity. Baricitinib, a clinically approved JAK1/JAK2 inhibitor, is currently being investigated in COVID-19 clinical trials. Here, we investigated the immunologic and virologic efficacy of baricitinib in a rhesus macaque model of SARS-CoV-2 infection. Viral shedding measured from nasal and throat swabs, bronchoalveolar lavages, and tissues was not reduced with baricitinib. Type I interferon (IFN) antiviral responses and SARS-CoV-2-specific T cell responses remained similar between the two groups. Animals treated with baricitinib showed reduced inflammation, decreased lung infiltration of inflammatory cells, reduced NETosis activity, and more limited lung pathology. Importantly, baricitinib-treated animals had a rapid and remarkably potent suppression of lung macrophage production of cytokines and chemokines responsible for inflammation and neutrophil recruitment. These data support a beneficial role for, and elucidate the immunological mechanisms underlying, the use of baricitinib as a frontline treatment for inflammation induced by SARS-CoV-2 infection.


Assuntos
Anti-Inflamatórios/administração & dosagem , Azetidinas/administração & dosagem , Tratamento Farmacológico da COVID-19 , COVID-19/imunologia , Macaca mulatta , Infiltração de Neutrófilos/efeitos dos fármacos , Purinas/administração & dosagem , Pirazóis/administração & dosagem , Sulfonamidas/administração & dosagem , Animais , COVID-19/fisiopatologia , Morte Celular/efeitos dos fármacos , Degranulação Celular/efeitos dos fármacos , Modelos Animais de Doenças , Inflamação/tratamento farmacológico , Inflamação/genética , Inflamação/imunologia , Janus Quinases/antagonistas & inibidores , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Pulmão/patologia , Ativação Linfocitária/efeitos dos fármacos , Macrófagos Alveolares/imunologia , SARS-CoV-2/fisiologia , Índice de Gravidade de Doença , Linfócitos T/imunologia , Replicação Viral/efeitos dos fármacos
5.
Immunity ; 56(5): 1132-1147.e6, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37030290

RESUMO

HIV infection persists during antiretroviral therapy (ART) due to a reservoir of latently infected cells that harbor replication-competent virus and evade immunity. Previous ex vivo studies suggested that CD8+ T cells from people with HIV may suppress HIV expression via non-cytolytic mechanisms, but the mechanisms responsible for this effect remain unclear. Here, we used a primary cell-based in vitro latency model and demonstrated that co-culture of autologous activated CD8+ T cells with HIV-infected memory CD4+ T cells promoted specific changes in metabolic and/or signaling pathways resulting in increased CD4+ T cell survival, quiescence, and stemness. Collectively, these pathways negatively regulated HIV expression and ultimately promoted the establishment of latency. As shown previously, we observed that macrophages, but not B cells, promoted latency in CD4+ T cells. The identification of CD8-specific mechanisms of pro-latency activity may favor the development of approaches to eliminate the viral reservoir in people with HIV.


Assuntos
Infecções por HIV , Humanos , Linfócitos T CD8-Positivos , Latência Viral , Linfócitos T CD4-Positivos , Replicação Viral
6.
Immunity ; 49(1): 42-55.e6, 2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-30021146

RESUMO

The execution of shock following high dose E. coli lipopolysaccharide (LPS) or bacterial sepsis in mice required pro-apoptotic caspase-8 in addition to pro-pyroptotic caspase-11 and gasdermin D. Hematopoietic cells produced MyD88- and TRIF-dependent inflammatory cytokines sufficient to initiate shock without any contribution from caspase-8 or caspase-11. Both proteases had to be present to support tumor necrosis factor- and interferon-ß-dependent tissue injury first observed in the small intestine and later in spleen and thymus. Caspase-11 enhanced the activation of caspase-8 and extrinsic cell death machinery within the lower small intestine. Neither caspase-8 nor caspase-11 was individually sufficient for shock. Both caspases collaborated to amplify inflammatory signals associated with tissue damage. Therefore, combined pyroptotic and apoptotic signaling mediated endotoxemia independently of RIPK1 kinase activity and RIPK3 function. These observations bring to light the relevance of tissue compartmentalization to disease processes in vivo where cytokines act in parallel to execute diverse cell death pathways.


Assuntos
Caspase 8/metabolismo , Caspases/metabolismo , Infecções por Escherichia coli/enzimologia , Infecções por Escherichia coli/fisiopatologia , Choque Séptico/enzimologia , Choque Séptico/fisiopatologia , Animais , Apoptose , Proteínas Reguladoras de Apoptose/metabolismo , Caspase 8/genética , Caspases/genética , Caspases Iniciadoras , Células Cultivadas , Feminino , Inflamação/metabolismo , Inflamação/patologia , Fator Regulador 3 de Interferon/genética , Interferon beta/sangue , Interferon beta/metabolismo , Intestino Delgado/patologia , Peptídeos e Proteínas de Sinalização Intracelular , Lipopolissacarídeos/toxicidade , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas de Ligação a Fosfato , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Transdução de Sinais , Baço/patologia , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator de Necrose Tumoral alfa/sangue , Fator de Necrose Tumoral alfa/metabolismo
7.
Nature ; 596(7872): 410-416, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34252919

RESUMO

The emergency use authorization of two mRNA vaccines in less than a year from the emergence of SARS-CoV-2 represents a landmark in vaccinology1,2. Yet, how mRNA vaccines stimulate the immune system to elicit protective immune responses is unknown. Here we used a systems vaccinology approach to comprehensively profile the innate and adaptive immune responses of 56 healthy volunteers who were vaccinated with the Pfizer-BioNTech mRNA vaccine (BNT162b2). Vaccination resulted in the robust production of neutralizing antibodies against the wild-type SARS-CoV-2 (derived from 2019-nCOV/USA_WA1/2020) and, to a lesser extent, the B.1.351 strain, as well as significant increases in antigen-specific polyfunctional CD4 and CD8 T cells after the second dose. Booster vaccination stimulated a notably enhanced innate immune response as compared to primary vaccination, evidenced by (1) a greater frequency of CD14+CD16+ inflammatory monocytes; (2) a higher concentration of plasma IFNγ; and (3) a transcriptional signature of innate antiviral immunity. Consistent with these observations, our single-cell transcriptomics analysis demonstrated an approximately 100-fold increase in the frequency of a myeloid cell cluster enriched in interferon-response transcription factors and reduced in AP-1 transcription factors, after secondary immunization. Finally, we identified distinct innate pathways associated with CD8 T cell and neutralizing antibody responses, and show that a monocyte-related signature correlates with the neutralizing antibody response against the B.1.351 variant. Collectively, these data provide insights into the immune responses induced by mRNA vaccination and demonstrate its capacity to prime the innate immune system to mount a more potent response after booster immunization.


Assuntos
Imunidade Adaptativa , Anticorpos Antivirais/imunologia , Vacinas contra COVID-19/imunologia , COVID-19/imunologia , Imunidade Inata , Linfócitos T/imunologia , Vacinologia , Adulto , Idoso , Anticorpos Neutralizantes/imunologia , Autoanticorpos/imunologia , Vacina BNT162 , Vacinas contra COVID-19/administração & dosagem , Feminino , Humanos , Imunização Secundária , Masculino , Pessoa de Meia-Idade , Análise de Célula Única , Glicoproteína da Espícula de Coronavírus/imunologia , Transcrição Gênica , Transcriptoma/genética , Adulto Jovem
8.
Nature ; 578(7793): 154-159, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31969705

RESUMO

Human immunodeficiency virus (HIV) persists indefinitely in individuals with HIV who receive antiretroviral therapy (ART) owing to a reservoir of latently infected cells that contain replication-competent virus1-4. Here, to better understand the mechanisms responsible for latency persistence and reversal, we used the interleukin-15 superagonist N-803 in conjunction with the depletion of CD8+ lymphocytes in ART-treated macaques infected with simian immunodeficiency virus (SIV). Although N-803 alone did not reactivate virus production, its administration after the depletion of CD8+ lymphocytes in conjunction with ART treatment induced robust and persistent reactivation of the virus in vivo. We found viraemia of more than 60 copies per ml in all macaques (n = 14; 100%) and in 41 out of a total of 56 samples (73.2%) that were collected each week after N-803 administration. Notably, concordant results were obtained in ART-treated HIV-infected humanized mice. In addition, we observed that co-culture with CD8+ T cells blocked the in vitro latency-reversing effect of N-803 on primary human CD4+ T cells that were latently infected with HIV. These results advance our understanding of the mechanisms responsible for latency reversal and lentivirus reactivation during ART-suppressed infection.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Interleucina-15/agonistas , Vírus da Imunodeficiência Símia/fisiologia , Replicação Viral , Animais , Linfócitos T CD4-Positivos/virologia , Infecções por HIV/imunologia , Infecções por HIV/virologia , Humanos , Interleucina-15/imunologia , Depleção Linfocítica , Macaca mulatta , Camundongos , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Latência Viral , Replicação Viral/imunologia
10.
J Virol ; 98(5): e0019424, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38567950

RESUMO

Zika virus (ZIKV) is a mosquito-borne flavivirus that caused an epidemic in the Americas in 2016 and is linked to severe neonatal birth defects, including microcephaly and spontaneous abortion. To better understand the host response to ZIKV infection, we adapted the 10× Genomics Chromium single-cell RNA sequencing (scRNA-seq) assay to simultaneously capture viral RNA and host mRNA. Using this assay, we profiled the antiviral landscape in a population of human monocyte-derived dendritic cells infected with ZIKV at the single-cell level. The bystander cells, which lacked detectable viral RNA, expressed an antiviral state that was enriched for genes coinciding predominantly with a type I interferon (IFN) response. Within the infected cells, viral RNA negatively correlated with type I IFN-dependent and -independent genes (the antiviral module). We modeled the ZIKV-specific antiviral state at the protein level, leveraging experimentally derived protein interaction data. We identified a highly interconnected network between the antiviral module and other host proteins. In this work, we propose a new paradigm for evaluating the antiviral response to a specific virus, combining an unbiased list of genes that highly correlate with viral RNA on a per-cell basis with experimental protein interaction data. IMPORTANCE: Zika virus (ZIKV) remains a public health threat given its potential for re-emergence and the detrimental fetal outcomes associated with infection during pregnancy. Understanding the dynamics between ZIKV and its host is critical to understanding ZIKV pathogenesis. Through ZIKV-inclusive single-cell RNA sequencing (scRNA-seq), we demonstrate on the single-cell level the dynamic interplay between ZIKV and the host: the transcriptional program that restricts viral infection and ZIKV-mediated inhibition of that response. Our ZIKV-inclusive scRNA-seq assay will serve as a useful tool for gaining greater insight into the host response to ZIKV and can be applied more broadly to the flavivirus field.


Assuntos
Células Dendríticas , Análise de Célula Única , Infecção por Zika virus , Zika virus , Humanos , Zika virus/fisiologia , Infecção por Zika virus/virologia , Infecção por Zika virus/imunologia , Células Dendríticas/virologia , Células Dendríticas/imunologia , RNA Viral/metabolismo , RNA Viral/genética , Interferon Tipo I/metabolismo , Interações Hospedeiro-Patógeno , Análise de Sequência de RNA
11.
PLoS Pathog ; 19(5): e1011219, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37253061

RESUMO

Young men who have sex with men (YMSM) are disproportionately affected by HIV and bacterial sexually transmitted infections (STI) including gonorrhea, chlamydia, and syphilis; yet research into the immunologic effects of these infections is typically pursued in siloes. Here, we employed a syndemic approach to understand potential interactions of these infections on the rectal mucosal immune environment among YMSM. We enrolled YMSM aged 18-29 years with and without HIV and/or asymptomatic bacterial STI and collected blood, rectal secretions, and rectal tissue biopsies. YMSM with HIV were on suppressive antiretroviral therapy (ART) with preserved blood CD4 cell counts. We defined 7 innate and 19 adaptive immune cell subsets by flow cytometry, the rectal mucosal transcriptome by RNAseq, and the rectal mucosal microbiome by 16S rRNA sequencing and examined the effects of HIV and STI and their interactions. We measured tissue HIV RNA viral loads among YMSM with HIV and HIV replication in rectal explant challenge experiments among YMSM without HIV. HIV, but not asymptomatic STI, was associated with profound alterations in the cellular composition of the rectal mucosa. We did not detect a difference in the microbiome composition associated with HIV, but asymptomatic bacterial STI was associated with a higher probability of presence of potentially pathogenic taxa. When examining the rectal mucosal transcriptome, there was evidence of statistical interaction; asymptomatic bacterial STI was associated with upregulation of numerous inflammatory genes and enrichment for immune response pathways among YMSM with HIV, but not YMSM without HIV. Asymptomatic bacterial STI was not associated with differences in tissue HIV RNA viral loads or in HIV replication in explant challenge experiments. Our results suggest that asymptomatic bacterial STI may contribute to inflammation particularly among YMSM with HIV, and that future research should examine potential harms and interventions to reduce the health impact of these syndemic infections.


Assuntos
Infecções por Chlamydia , Gonorreia , Infecções por HIV , Minorias Sexuais e de Gênero , Infecções Sexualmente Transmissíveis , Masculino , Humanos , Infecções Sexualmente Transmissíveis/complicações , Infecções Sexualmente Transmissíveis/diagnóstico , Infecções Sexualmente Transmissíveis/terapia , Homossexualidade Masculina , RNA Ribossômico 16S , Infecções por Chlamydia/complicações , Infecções por HIV/complicações , Gonorreia/epidemiologia
12.
J Virol ; 97(6): e0176022, 2023 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-37223960

RESUMO

CD4+ T follicular helper (TFH) cells are key targets for human immunodeficiency virus (HIV)/simian immunodeficiency virus (SIV) replication and contribute to the virus reservoir under antiretroviral therapy (ART). Here, we describe a novel CD3+ CD20+ double-positive (DP) lymphocyte subset, resident in secondary lymphoid organs of humans and rhesus macaques (RMs), that appear predominantly after membrane exchange between TFH and B cells. DP lymphocytes are enriched in cells displaying a TFH phenotype (CD4+ PD1hi CXCR5hi), function (interleukin 21 positive [IL-21+]), and gene expression profile. Importantly, expression of CD40L upon brief in vitro mitogen stimulation identifies, by specific gene-expression signatures, DP cells of TFH-cell origin versus those of B-cell origin. Analysis of 56 RMs showed that DP cells (i) significantly increase following SIV infection, (ii) are reduced after 12 months of ART in comparison to pre-ART levels, and (iii) expand to a significantly higher frequency following ART interruption. Quantification of total SIV-gag DNA on sorted DP cells from chronically infected RMs showed that these cells are susceptible to SIV infection. These data reinforce earlier observations that CD20+ T cells are infected and expanded by HIV infection, while suggesting that these cells phenotypically overlap activated CD4+ TFH cells that acquire CD20 expression via trogocytosis and can be targeted as part of therapeutic strategies aimed at HIV remission. IMPORTANCE The HIV reservoir is largely composed of latently infected memory CD4+ T cells that persist during antiretroviral therapy and constitute a major barrier toward HIV eradication. In particular, CD4+ T follicular helper cells have been demonstrated as key targets for viral replication and persistence under ART. In lymph nodes from HIV-infected humans and SIV-infected rhesus macaques, we show that CD3+ CD20+ lymphocytes emerge after membrane exchange between T cells and B cells and are enriched in phenotypic, functional, and gene expression profiles found in T follicular helper cells. Furthermore, in SIV-infected rhesus macaques, these cells expand following experimental infection and after interruption of ART and harbor SIV DNA at levels similar to those found in CD4+ T cells; thus, CD3+ CD20+ lymphocytes are susceptible to SIV infection and can contribute to SIV persistence.


Assuntos
Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Células T Auxiliares Foliculares , Animais , Humanos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/virologia , Infecções por HIV/imunologia , Infecções por HIV/virologia , Linfonodos/citologia , Macaca mulatta , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/genética , Células T Auxiliares Foliculares/imunologia , Células T Auxiliares Foliculares/virologia , Linfócitos B/imunologia , Linfócitos B/virologia , Ligante de CD40/genética , Expressão Gênica/imunologia , DNA Viral/metabolismo , Tecido Linfoide/citologia , Tecido Linfoide/imunologia , Tecido Linfoide/virologia
13.
PLoS Pathog ; 18(7): e1010723, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35867722

RESUMO

Despite the advent of effective antiretroviral therapy (ART), human immunodeficiency virus (HIV) continues to pose major challenges, with extensive pathogenesis during acute and chronic infection prior to ART initiation and continued persistence in a reservoir of infected CD4 T cells during long-term ART. CD101 has recently been characterized to play an important role in CD4 Treg potency. Using the simian immunodeficiency virus (SIV) model of HIV infection in rhesus macaques, we characterized the role and kinetics of CD101+ CD4 T cells in longitudinal SIV infection. Phenotypic analyses and single-cell RNAseq profiling revealed that CD101 marked CD4 Tregs with high immunosuppressive potential, distinct from CD101- Tregs, and these cells also were ideal target cells for HIV/SIV infection, with higher expression of CCR5 and α4ß7 in the gut mucosa. Notably, during acute SIV infection, CD101+ CD4 T cells were preferentially depleted across all CD4 subsets when compared with their CD101- counterpart, with a pronounced reduction within the Treg compartment, as well as significant depletion in mucosal tissue. Depletion of CD101+ CD4 was associated with increased viral burden in plasma and gut and elevated levels of inflammatory cytokines. While restored during long-term ART, the reconstituted CD101+ CD4 T cells display a phenotypic profile with high expression of inhibitory receptors (including PD-1 and CTLA-4), immunsuppressive cytokine production, and high levels of Ki-67, consistent with potential for homeostatic proliferation. Both the depletion of CD101+ cells and phenotypic profile of these cells found in the SIV model were confirmed in people with HIV on ART. Overall, these data suggest an important role for CD101-expressing CD4 T cells at all stages of HIV/SIV infection and a potential rationale for targeting CD101 to limit HIV pathogenesis and persistence, particularly at mucosal sites.


Assuntos
Infecções por HIV , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Animais , Linfócitos T CD4-Positivos , Infecções por HIV/metabolismo , Humanos , Macaca mulatta
15.
Nature ; 553(7686): 77-81, 2018 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-29300007

RESUMO

In contrast to infections with human immunodeficiency virus (HIV) in humans and simian immunodeficiency virus (SIV) in macaques, SIV infection of a natural host, sooty mangabeys (Cercocebus atys), is non-pathogenic despite high viraemia. Here we sequenced and assembled the genome of a captive sooty mangabey. We conducted genome-wide comparative analyses of transcript assemblies from C. atys and AIDS-susceptible species, such as humans and macaques, to identify candidates for host genetic factors that influence susceptibility. We identified several immune-related genes in the genome of C. atys that show substantial sequence divergence from macaques or humans. One of these sequence divergences, a C-terminal frameshift in the toll-like receptor-4 (TLR4) gene of C. atys, is associated with a blunted in vitro response to TLR-4 ligands. In addition, we found a major structural change in exons 3-4 of the immune-regulatory protein intercellular adhesion molecule 2 (ICAM-2); expression of this variant leads to reduced cell surface expression of ICAM-2. These data provide a resource for comparative genomic studies of HIV and/or SIV pathogenesis and may help to elucidate the mechanisms by which SIV-infected sooty mangabeys avoid AIDS.


Assuntos
Síndrome da Imunodeficiência Adquirida/genética , Cercocebus atys/genética , Cercocebus atys/virologia , Predisposição Genética para Doença , Genoma/genética , Especificidade de Hospedeiro/genética , Vírus da Imunodeficiência Símia , Síndrome da Imunodeficiência Adquirida/virologia , Sequência de Aminoácidos , Animais , Moléculas de Adesão Celular/química , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Cercocebus atys/imunologia , Éxons/genética , Feminino , Mutação da Fase de Leitura/genética , Variação Genética , Genômica , HIV/patogenicidade , Humanos , Macaca/virologia , Deleção de Sequência , Síndrome de Imunodeficiência Adquirida dos Símios/genética , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/patogenicidade , Especificidade da Espécie , Receptor 4 Toll-Like/química , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/imunologia , Transcriptoma/genética , Sequenciamento Completo do Genoma
16.
Clin Immunol ; 255: 109750, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37660744

RESUMO

Although effective contraceptives are crucial for preventing unintended pregnancies, evidence suggests that their use may perturb the female genital tract (FGT). A comparative analysis of the effects of the most common contraceptives on the FGT have not been evaluated in a randomized clinical trial setting. Here, we evaluated the effect of three long-acting contraceptive methods: depot medroxyprogesterone acetate(DMPA-IM), levonorgestrel(LNG) implant, and a copper intrauterine device (Cu-IUD), on the endocervical host transcriptome in 188 women from the Evidence for Contraceptive Options and HIV Outcomes Trial (ECHO) trial. Cu-IUD usage showed the most extensive transcriptomic changes, and was associated with inflammatory and anti-viral host responses. DMPA-IM usage was enriched for pathways associated with T cell responses. LNG implant had the mildest effect on endocervical gene expression, and was associated with growth factor signaling. These data provide a mechanistic basis for the diverse influence that varying contraceptives have on the FGT.


Assuntos
Cobre , Dispositivos Intrauterinos de Cobre , Gravidez , Feminino , Humanos , Levanogestrel/farmacologia , Anticoncepcionais , Análise de Sistemas
17.
J Virol ; 96(7): e0169921, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35293766

RESUMO

The "shock and kill" strategy for HIV-1 cure incorporates latency-reversing agents (LRA) in combination with interventions that aid the host immune system in clearing virally reactivated cells. LRAs have not yet been investigated in pediatric clinical or preclinical studies. Here, we evaluated an inhibitor of apoptosis protein (IAP) inhibitor (IAPi), AZD5582, that activates the noncanonical NF-κB (ncNF-κB) signaling pathway to reverse latency. Ten weekly doses of AZD5582 were intravenously administered at 0.1 mg/kg to rhesus macaque (RM) infants orally infected with SIVmac251 at 4 weeks of age and treated with a triple ART regimen for over 1 year. During AZD5582 treatment, on-ART viremia above the limit of detection (LOD, 60 copies/mL) was observed in 5/8 infant RMs starting at 3 days post-dose 4 and peaking at 771 copies/mL. Of the 135 measurements during AZD5582 treatment in these 5 RM infants, only 8 were above the LOD (6%), lower than the 46% we have previously reported in adult RMs. Pharmacokinetic analysis of plasma AZD5582 levels revealed a lower Cmax in treated infants compared to adults (294 ng/mL versus 802 ng/mL). RNA-Sequencing of CD4+ T cells comparing pre- and post-AZD5582 dosing showed many genes that were similarly upregulated in infants and adults, but the expression of key ncNF-κB genes, including NFKB2 and RELB, was significantly higher in adult RMs. Our results suggest that dosing modifications for this latency reversal approach may be necessary to maximize virus reactivation in the pediatric setting for successful "shock and kill" strategies. IMPORTANCE While antiretroviral therapy (ART) has improved HIV-1 disease outcome and reduced transmission, interruption of ART results in rapid viral rebound due to the persistent latent reservoir. Interventions to reduce the viral reservoir are of critical importance, especially for children who must adhere to lifelong ART to prevent disease progression. Here, we used our previously established pediatric nonhuman primate model of oral SIV infection to evaluate AZD5582, identified as a potent latency-reversing agent in adult macaques, in the controlled setting of daily ART. We demonstrated the safety of the IAPi AZD5582 and evaluate the pharmacokinetics and pharmacodynamics of repeated dosing. The response to AZD5582 in macaque infants differed from what we previously showed in adult macaques with weaker latency reversal in infants, likely due to altered pharmacokinetics and less inducibility of infant CD4+ T cells. These data supported the contention that HIV-1 cure strategies for children are best evaluated using pediatric model systems.


Assuntos
Infecções por HIV , HIV-1 , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Alcinos/farmacocinética , Alcinos/farmacologia , Alcinos/uso terapêutico , Animais , Antirretrovirais/farmacocinética , Antirretrovirais/farmacologia , Antirretrovirais/uso terapêutico , Linfócitos T CD4-Positivos , Infecções por HIV/tratamento farmacológico , HIV-1/genética , Humanos , Macaca mulatta , Oligopeptídeos/farmacocinética , Oligopeptídeos/farmacologia , Oligopeptídeos/uso terapêutico , Síndrome de Imunodeficiência Adquirida dos Símios/tratamento farmacológico , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Carga Viral , Latência Viral/efeitos dos fármacos , Replicação Viral
18.
PLoS Pathog ; 17(6): e1009674, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34181694

RESUMO

HIV associated immune activation (IA) is associated with increased morbidity in people living with HIV (PLWH) on antiretroviral therapy, and remains a barrier for strategies aimed at reducing the HIV reservoir. The underlying mechanisms of IA have not been definitively elucidated, however, persistent production of Type I IFNs and expression of ISGs is considered to be one of the primary factors. Plasmacytoid DCs (pDCs) are a major producer of Type I IFN during viral infections, and are highly immunomodulatory in acute HIV and SIV infection, however their role in chronic HIV/SIV infection has not been firmly established. Here, we performed a detailed transcriptomic characterization of pDCs in chronic SIV infection in rhesus macaques, and in sooty mangabeys, a natural host non-human primate (NHP) species that undergoes non-pathogenic SIV infection. We also investigated the immunostimulatory capacity of lymph node homing pDCs in chronic SIV infection by contrasting gene expression of pDCs isolated from lymph nodes with those from blood. We observed that pDCs in LNs, but not blood, produced high levels of IFNα transcripts, and upregulated gene expression programs consistent with T cell activation and exhaustion. We apply a novel strategy to catalogue uncharacterized surface molecules on pDCs, and identified the lymphoid exhaustion markers TIGIT and LAIR1 as highly expressed in SIV infection. pDCs from SIV-infected sooty mangabeys lacked the activation profile of ISG signatures observed in infected macaques. These data demonstrate that pDCs are a primary producer of Type I IFN in chronic SIV infection. Further, this study demonstrated that pDCs trafficking to LNs persist in a highly activated state well into chronic infection. Collectively, these data identify pDCs as a highly immunomodulatory cell population in chronic SIV infection, and a putative therapeutic target to reduce immune activation.


Assuntos
Células Dendríticas/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Animais , Cercocebus atys , Perfilação da Expressão Gênica , Macaca mulatta , RNA-Seq , Transcriptoma
19.
PLoS Pathog ; 16(9): e1008821, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32941545

RESUMO

MHC-I-restricted, virus-specific cytotoxic CD8+ T cells (CTLs) may control human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) replication via the recognition and killing of productively infected CD4+ T cells. Several studies in SIV-infected macaques suggest that CD8+ T cells may also decrease virus production by suppressing viral transcription. Here, we show that non-HIV-specific, TCR-activated non-cytolytic CD8+ T cells suppress HIV transcription via a virus- and MHC-independent immunoregulatory mechanism that modulates CD4+ T cell proliferation and activation. We also demonstrate that this CD8+ T cell-mediated effect promotes the survival of infected CD4+ T cells harboring integrated, inducible virus. Finally, we used RNA sequencing and secretome analyses to identify candidate cellular pathways that are involved in the virus-silencing mediated by these CD8+ T cells. This study characterizes a previously undescribed mechanism of immune-mediated HIV silencing that may be involved in the establishment and maintenance of the reservoir under antiretroviral therapy and therefore represent a major obstacle to HIV eradication.


Assuntos
Linfócitos T CD8-Positivos/imunologia , HIV-1/fisiologia , Antígenos de Histocompatibilidade Classe I/imunologia , Imunidade Inata , Transcrição Gênica/imunologia , Replicação Viral/imunologia , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/patologia , Proliferação de Células , Humanos , Macaca
20.
J Infect Dis ; 224(12): 2094-2104, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34003290

RESUMO

BACKGROUND: Bacterial vaginosis (BV) treatment failures and recurrences are common. To identify features associated with treatment response, we compared vaginal microbiota and host ectocervical transcriptome before and after oral metronidazole therapy. METHODS: Women with BV (Bronx, New York and Thika, Kenya) received 7 days of oral metronidazole at enrollment (day 0) and underwent genital tract sampling of microbiome (16S ribosomal RNA gene sequencing), transcriptome (RNAseq), and immune mediator concentrations on day 0, 15, and 35. RESULTS: Bronx participants were more likely than Thika participants to clinically respond to metronidazole (19/20 vs 10/18, respectively, P = .0067) and by changes in microbiota composition and diversity. After dichotomizing the cohort into responders and nonresponders by change in α-diversity between day 35 and day 0, we identified that transcription differences associated with chemokine signaling (q = 0.002) and immune system process (q = 2.5 × 10-8) that differentiated responders from nonresponders were present at enrollment. Responders had significantly lower levels of CXCL9 in cervicovaginal lavage on day 0 (P < .007), and concentrations of CXCL9, CXCL10, and monocyte chemoattractant protein 1 increased significantly between day 0 and day 35 in responders vs nonresponders. CONCLUSIONS: Response to metronidazole is characterized by significant changes in chemokines and related transcripts, suggesting that treatments that promote these pathways may prove beneficial.


Assuntos
Bactérias/isolamento & purificação , Colo do Útero/microbiologia , Citocinas/metabolismo , Metronidazol/administração & dosagem , Microbiota/efeitos dos fármacos , Vagina/microbiologia , Vaginose Bacteriana/tratamento farmacológico , Adolescente , Adulto , Bactérias/genética , DNA Bacteriano/genética , Feminino , Humanos , Quênia , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Transcriptoma , Resultado do Tratamento , Vaginose Bacteriana/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA