Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Tumour Virus Res ; 15: 200257, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36775199

RESUMO

Previous studies have shown that the high-risk HPV E6 oncoprotein PDZ binding motifs (PBMs) can interact with PDZ proteins or members of the 14-3-3 family, depending upon the E6 phosphorylation status. However, different HPV E6 oncoproteins are subjected to phosphorylation by different cellular kinases. We have therefore been interested in determining whether we can dissect E6's PDZ and 14-3-3 interactions at the molecular level. Using HPV-18 E6, we have found that its Chk1 phosphorylation requires residues both upstream and downstream of the phospho-acceptor site, in addition to the Chk1 consensus recognition motif. Furthermore, we demonstrate that different high-risk HPV E6 types are differentially phosphorylated by Chk1 kinases, potentially due to the differences in their carboxy-terminal residues, as they are critical for kinase recognition. Moreover, differences in the E6 phosphorylation levels of different HR HPV types directly link to their ability to interact with different 14-3-3 isoforms, based on their phospho-status. Interestingly, 14-3-3 recognition appears to be less dependent upon the precise sequence constraints of the E6 carboxy terminal region, whilst minor amino acid variations have a major impact upon PDZ recognition. These results demonstrate that changes in E6 phospho-status during the life cycle or during malignant progression will modulate E6 interactions and, potentially, inversely regulate the levels of PDZ and 14-3-3 proteins.


Assuntos
Proteínas Oncogênicas Virais , Infecções por Papillomavirus , Humanos , Fosforilação , Proteínas Oncogênicas Virais/genética , Proteínas 14-3-3/genética
2.
Sci Rep ; 11(1): 1111, 2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33441820

RESUMO

Human papillomavirus (HPV) is the leading cause of cervical cancer and has been implicated in several other cancer types including vaginal, vulvar, penile, and oropharyngeal cancers. Despite the recent availability of a vaccine, there are still over 310,000 deaths each year worldwide. Current treatments for HPV-mediated cancers show limited efficacy, and would benefit from improved understanding of disease mechanisms. Recently, we developed a Drosophila 'HPV 18 E6' model that displayed loss of cellular morphology and polarity, junctional disorganization, and degradation of the major E6 target Magi; we further provided evidence that mechanisms underlying HPV E6-induced cellular abnormalities are conserved between humans and flies. Here, we report a functional genetic screen of the Drosophila kinome that identified IKK[Formula: see text]-a regulator of NF-κB-as an enhancer of E6-induced cellular defects. We demonstrate that inhibition of IKK[Formula: see text] reduces Magi degradation and that this effect correlates with hyperphosphorylation of E6. Further, the reduction in IKK[Formula: see text] suppressed the cellular transformation caused by the cooperative action of HPVE6 and the oncogenic Ras. Finally, we demonstrate that the interaction between IKK[Formula: see text] and E6 is conserved in human cells: inhibition of IKK[Formula: see text] blocked the growth of cervical cancer cells, suggesting that IKK[Formula: see text] may serve as a novel therapeutic target for HPV-mediated cancers.


Assuntos
Olho Composto de Artrópodes/anormalidades , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/antagonistas & inibidores , Proteínas de Drosophila/metabolismo , Quinase I-kappa B/antagonistas & inibidores , Quinase I-kappa B/metabolismo , Proteínas Oncogênicas Virais/metabolismo , Neoplasias do Colo do Útero/patologia , Animais , Pontos de Checagem do Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células , Transformação Celular Viral , Olho Composto de Artrópodes/citologia , Olho Composto de Artrópodes/crescimento & desenvolvimento , Olho Composto de Artrópodes/metabolismo , Drosophila , Feminino , Humanos , Núcleosídeo-Fosfato Quinase/metabolismo , Domínios PDZ , Fosforilação , Proteólise , Ubiquitina-Proteína Ligases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA