Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
IEEE Open J Eng Med Biol ; 5: 125-132, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38487097

RESUMO

Goal: We introduce an in-vivo validated finite element (FE) simulation approach for predicting individual knee joint kinematics. Our vision is to improve clinicians' understanding of the complex individual anatomy and potential pathologies to improve treatment and restore physiological joint kinematics. Methods: Our 3D FE modeling approach for individual human knee joints is based on segmentation of anatomical structures extracted from routine static magnetic resonance (MR) images. We validate the predictive abilities of our model using static MR images of the knees of eleven healthy volunteers in dedicated knee poses, which are achieved using a customized MR-compatible pneumatic loading device. Results: Our FE simulations reach an average translational accuracy of 2 mm and an average angular accuracy of 1[Formula: see text] compared to the reference knee pose. Conclusions: Reaching high accuracy, our individual FE model can be used in the decision-making process to restore knee joint stability and functionality after various knee injuries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA