Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Mater ; 21(3): 359-365, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35190655

RESUMO

Ionogels are compelling materials for technological devices due to their excellent ionic conductivity, thermal and electrochemical stability, and non-volatility. However, most existing ionogels suffer from low strength and toughness. Here, we report a simple one-step method to achieve ultra-tough and stretchable ionogels by randomly copolymerizing two common monomers with distinct solubility of the corresponding polymers in an ionic liquid. Copolymerization of acrylamide and acrylic acid in 1-ethyl-3-methylimidazolium ethyl sulfate results in a macroscopically homogeneous covalent network with in situ phase separation: a polymer-rich phase with hydrogen bonds that dissipate energy and toughen the ionogel; and an elastic solvent-rich phase that enables for large strain. These ionogels have high fracture strength (12.6 MPa), fracture energy (~24 kJ m-2) and Young's modulus (46.5 MPa), while being highly stretchable (~600% strain) and having self-healing and shape-memory properties. This concept can be applied to other monomers and ionic liquids, offering a promising way to tune ionogel microstructure and properties in situ during one-step polymerization.


Assuntos
Líquidos Iônicos , Condutividade Elétrica , Géis/química , Ligação de Hidrogênio , Líquidos Iônicos/química , Polímeros
2.
Proc Natl Acad Sci U S A ; 116(43): 21421-21426, 2019 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-31527259

RESUMO

We show that glasses with aligned smectic liquid crystal-like order can be produced by physical vapor deposition of a molecule without any equilibrium liquid crystal phases. Smectic-like order in vapor-deposited films was characterized by wide-angle X-ray scattering. A surface equilibration mechanism predicts the highly smectic-like vapor-deposited structure to be a result of significant vertical anchoring at the surface of the equilibrium liquid, and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy orientation analysis confirms this prediction. Understanding of the mechanism enables informed engineering of different levels of smectic order in vapor-deposited glasses to suit various applications. The preparation of a glass with orientational and translational order from a nonliquid crystal opens up an exciting paradigm for accessing extreme anisotropy in glassy solids.

3.
Soft Matter ; 13(22): 4047-4056, 2017 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-28517013

RESUMO

Incipient microphase separation is observed by wide angle X-ray scattering (WAXS) in short chain multiblock copolymers consisting of perfluoropolyether (PFPE) and poly(ethylene oxide) (PEO) segments. Two PFPE-PEO block copolymers were studied; one with dihydroxyl end groups and one with dimethyl carbonate end groups. Despite having a low degree of polymerization (N ∼ 10), these materials exhibited significant scattering intensity, due to disordered concentration fluctuations between their PFPE-rich and PEO-rich domains. The disordered scattering intensity was fit to a model based on a multicomponent random phase approximation to determine the value of the interaction parameter, χ, and the radius of gyration, Rg. Over the temperature range 30-90 °C, the values of χ were determined to be very large (∼2-2.5), indicating a high degree of immiscibility between the PFPE and PEO blocks. In PFPE-PEO, due to the large electron density contrast between the fluorinated and non-fluorinated block and the high value of χ, disordered scattering was detected at intermediate scattering angles, (q ∼ 2 nm-1) for relatively small polymer chains. Our ability to detect concentration fluctuations was enabled by both a relatively large value of χ and significant scattering contrast.

4.
Proc Natl Acad Sci U S A ; 111(9): 3327-31, 2014 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-24516123

RESUMO

The flammability of conventional alkyl carbonate electrolytes hinders the integration of large-scale lithium-ion batteries in transportation and grid storage applications. In this study, we have prepared a unique nonflammable electrolyte composed of low molecular weight perfluoropolyethers and bis(trifluoromethane)sulfonimide lithium salt. These electrolytes exhibit thermal stability beyond 200 °C and a remarkably high transference number of at least 0.91 (more than double that of conventional electrolytes). Li/LiNi1/3Co1/3Mn1/3O2 cells made with this electrolyte show good performance in galvanostatic cycling, confirming their potential as rechargeable lithium batteries with enhanced safety and longevity.


Assuntos
Fontes de Energia Elétrica , Eletrólitos/química , Éteres/química , Fluorocarbonos/química , Lítio/química , Temperatura , Meios de Transporte
5.
Macromolecules ; 57(1): 54-62, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38222028

RESUMO

Block copolymer (BCP) grain structure affects the mechanical, optical, and electrical properties of BCP materials, making the accurate characterization of this grain structure an important goal. In this study, improved BCP grain parameters were obtained by employing an exponentially decaying correlation function within the ellipsoidal grain model, instead of the Gaussian correlation function that was used in previous work. The exponential correlation function provides a better fit to the experimental depolarized light scattering data, which outweighs the disadvantage that it requires numerical integration to obtain the model scattered intensity.

6.
ACS Nano ; 18(2): 1464-1476, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38175970

RESUMO

The mRNA technology has emerged as a rapid modality to develop vaccines during pandemic situations with the potential to protect against endemic diseases. The success of mRNA in producing an antigen is dependent on the ability to deliver mRNA to the cells using a vehicle, which typically consists of a lipid nanoparticle (LNP). Self-amplifying mRNA (SAM) is a synthetic mRNA platform that, besides encoding for the antigen of interest, includes the replication machinery for mRNA amplification in the cells. Thus, SAM can generate many antigen encoding mRNA copies and prolong expression of the antigen with lower doses than those required for conventional mRNA. This work describes the morphology of LNPs containing encapsulated SAM (SAM LNPs), with SAM being three to four times larger than conventional mRNA. We show evidence that SAM changes its conformational structure when encapsulated in LNPs, becoming more compact than the free SAM form. A characteristic "bleb" structure is observed in SAM LNPs, which consists of a lipid-rich core and an aqueous RNA-rich core, both surrounded by a DSPC-rich lipid shell. We used SANS and SAXS data to confirm that the prevalent morphology of the LNP consists of two-core compartments where components are heterogeneously distributed between the two cores and the shell. A capped cylinder core-shell model with two interior compartments was built to capture the overall morphology of the LNP. These findings provide evidence that bleb two-compartment structures can be a representative morphology in SAM LNPs and highlight the need for additional studies that elucidate the role of spherical and bleb morphologies, their mechanisms of formation, and the parameters that lead to a particular morphology for a rational design of LNPs for mRNA delivery.


Assuntos
Lipossomos , Nanopartículas , RNA Mensageiro/química , Espalhamento a Baixo Ângulo , Difração de Raios X , Nanopartículas/química , Lipídeos/química , RNA Interferente Pequeno/química
7.
ACS Appl Mater Interfaces ; 14(2): 3455-3466, 2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-34982543

RESUMO

The ability to control structure in molecular glasses has enabled them to play a key role in modern technology; in particular, they are ubiquitous in organic light-emitting diodes. While the interplay between bulk structure and optoelectronic properties has been extensively investigated, few studies have examined molecular orientation near buried interfaces despite its critical role in emergent functionality. Direct, quantitative measurements of buried molecular orientation are inherently challenging, and many methods are insensitive to orientation in amorphous soft matter or lack the necessary spatial resolution. To overcome these challenges, we use polarized resonant soft X-ray reflectivity (p-RSoXR) to measure nanometer-resolved, molecular orientation depth profiles of vapor-deposited thin films of an organic semiconductor Tris(4-carbazoyl-9-ylphenyl)amine (TCTA). Our depth profiling approach characterizes the vertical distribution of molecular orientation and reveals that molecules near the inorganic substrate and free surface have a different, nearly isotropic orientation compared to those of the anisotropic bulk. Comparison of p-RSoXR results with near-edge X-ray absorption fine structure spectroscopy and optical spectroscopies reveals that TCTA molecules away from the interfaces are predominantly planar, which may contribute to their attractive charge transport qualities. Buried interfaces are further investigated in a TCTA bilayer (each layer deposited under separate conditions resulting in different orientations) in which we find a narrow interface between orientationally distinct layers extending across ≈1 nm. Coupling this result with molecular dynamics simulations provides additional insight into the formation of interfacial structure. This study characterizes the local molecular orientation at various types of buried interfaces in vapor-deposited glasses and provides a foundation for future studies to develop critical structure-function relationships.

8.
ACS Nano ; 15(6): 9577-9587, 2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34014640

RESUMO

Interactions between polymers and surfaces can be used to influence properties including mechanical performance in nanocomposites, the glass transition temperature, and the orientation of thin film block copolymers (BCPs). In this work we investigate how specific interactions between the substrate and BCPs with varying substrate affinity impact the interfacial width between polymer components. The interface width is generally assumed to be a function of the BCP properties and independent of the surface affinity or substrate proximity. Using resonant soft X-ray reflectivity the optical constants of the film can be controlled by changing the incident energy, thereby varying the depth sensitivity of the measurement. Resonant soft X-ray reflectivity measurements were conducted on films of polystyrene-b-poly(2-vinylpyridine) (PS-b-P2VP) and PS-b-poly(methyl methacrylate) (PS-b-PMMA), where the thickness of the film was varied from half the periodicity (L0) of the BCP to 5.5 L0. The results of this measurement on the PS-b-P2VP films show a significant expansion of the interface width immediately adjacent to the surface. This is likely caused by the strong adsorption of P2VP to the substrate, which constrains the mobility of the junction points, preventing them from reaching their equilibrium distribution and expanding the observed interface width. The interface width decays toward equilibrium moving away from the substrate, with the decay rate being a function of film thickness below a critical limit. The PMMA block appears to be more mobile, and the BCP interfaces near the substrate match their equilibrium value.

9.
ACS Macro Lett ; 8(2): 107-112, 2019 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-35619416

RESUMO

The order-to-disorder transition temperature (TODT) in a series of mixtures of polystyrene-b-poly(ethylene oxide) (SEO) and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) salt is identified by the disappearance of a quadrupolar 7Li NMR triplet peak splitting above a critical temperature, where a singlet is observed. The macroscopic alignment of ordered domains required to produce a quadrupolar splitting occurs due to exposure to the NMR magnetic field. Alignment is confirmed using small-angle X-ray scattering (SAXS). The TODT determined by NMR is consistent with that determined using SAXS.

10.
ACS Macro Lett ; 4(12): 1386-1391, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-35614788

RESUMO

Conjugated semiconducting polymers, such as poly(3-hexylthiophene) (P3HT), are poised to play an integral role in the development of organic electronic devices; however, their performance is governed by factors that are intrinsically coupled: dopant concentration, carrier mobility, crystal structure, and mesoscale morphology. We utilize synchrotron X-ray scattering and electrochemical impedance spectroscopy to probe the crystal structure and electronic properties of P3HT in situ during electrochemical doping. We show that doping strains the crystalline domains, coincident with an exponential increase in hole mobility. We believe these observations provide guidance for the development of improved theoretical models for charge transport in semiconducting polymers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA