Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Infect Immun ; 91(7): e0013123, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37338372

RESUMO

Inhalation of respiratory droplets infected with Yersinia pestis results in a rapidly progressing and lethal necrotic pneumonia called primary pneumonic plague. Disease manifests as biphasic, with an initial preinflammatory phase with rapid bacterial replication in the lungs absent readily detectable host immune responses. This is followed by the onset of a proinflammatory phase that sees the dramatic upregulation of proinflammatory cytokines and extensive neutrophil accumulation in the lungs. The plasminogen activator protease (Pla) is an essential virulence factor that is responsible for survival of Y. pestis in the lungs. Our lab recently showed that Pla functions as an adhesin that promotes binding to alveolar macrophages to facilitate translocation of effector proteins called Yops into the cytosol of target host cells via a type 3 secretion system (T3SS). Loss of Pla-mediated adherence disrupted the preinflammatory phase of disease and resulted in early neutrophil migration to the lungs. While it is established that Yersinia broadly suppresses host innate immune responses, it is not clear precisely which signals need to be inhibited to establish a preinflammatory stage of infection. Here, we show that early Pla-mediated suppression of Interleukin-17 (IL-17) expression in alveolar macrophages and pulmonary neutrophils limits neutrophil migration to the lungs and aids in establishing a preinflammatory phase of disease. In addition, IL-17 ultimately contributes to neutrophil migration to the airways that defines the later proinflammatory phase of infection. These results suggest that the pattern of IL-17 expression contributes to the progression of primary pneumonic plague.


Assuntos
Peste , Yersinia pestis , Animais , Camundongos , Interleucina-17/genética , Interleucina-17/metabolismo , Infiltração de Neutrófilos , Pulmão/microbiologia , Yersinia pestis/metabolismo , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
2.
Biomedicines ; 12(3)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38540156

RESUMO

Recent epidemiological studies suggest that individuals with Down syndrome are more susceptible to SARS-CoV-2 infection and have higher rates of hospitalization and mortality than the general population. However, the main drivers behind these disparate health outcomes remain unknown. Herein, we performed experimental infections with SARS-CoV-2 in a well-established mouse model of Down syndrome. We observed similar SARS-CoV-2 replication kinetics and dissemination in the primary and secondary organs between mice with and without Down syndrome, suggesting that both groups have similar susceptibilities to SARS-CoV-2 infection. However, Down syndrome mice exhibited more severe disease as defined by clinical features including symptoms, weight loss, pulmonary function, and survival of mice. We found that increased disease severity in Down syndrome mice could not be attributed solely to increased infectivity or a more dramatic pro-inflammatory response to infection. Rather, results from RNA sequencing suggested that differences in the expression of genes from other physiological pathways, such as deficient oxidative phosphorylation, cardiopulmonary dysfunction, and deficient mucociliary clearance in the lungs may also contribute to heightened disease severity and mortality in Down syndrome mice following SARS-CoV-2 infection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA